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Disclaimer

▶ This presentation mainly comprises
Pitfalls
Rabbit holes
(hopefully helpful) hints

▶ My view is biased by my previous research
→ Some statements may not hold for your area
→ Please ask if something is unclear

▶ This is not a one man show
→ Feel free to add your own views and experiences
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Introduction

Why do we need an evaluation?

What do we expect from a good evaluation?
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Introduction
Evaluation?

▶ Measure success / answer a research question
▶ Comparability
▶ Objectivity / Fairness
▶ Reproducibility / Repeatability
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Evaluation

1. Dataset 2. Algorithm
Execution 3. KPIs

4. Combination
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Section 1

Datasets
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Datasets

▶ Do you have data?

Starting without having data is a good first step to waste your time.
Ensure that you have a good understanding which data you actually
need.
→ Write down the (formal) definition of the problem that you want
to tackle

▶ Where can we get data from?
▶ Use an existing dataset
▶ Create your own dataset
▶ Use synthetic data
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Datasets
Reuse Existing Datasets

▶ Advantages:
▶ Low effort (typically)
▶ Easier comparison to related work

( but not always possible)

▶ Dataset sources:
▶ Related Work
▶ Data portals
▶ Challenges / competitions

Datasets can disappear over time!
Download and store it (with a README).
Ask the Internet Archive to archive the page.1

1https://archive.org/web/
M. Röder (DICE): Evaluating Machine Learning 7 / 44
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Datasets
Reuse Existing Datasets

Check the dataset!
▶ Datasets may...

miss (meta) data

not contain the data you expect

1 { "Date": "2017 -08 -30",
2 "URL": "https:// schluesselkindblog.com /2017/[...]",
3 "Title": "Prozess beginnt: Mord an Freiburger

Studentin",
4 "Teaser": "Prozessbeginn gegen [...]",
5 "False_Statement_1": "Die Pflegefamilie [...]",
6 "Ratio_of_Fake_Statements": "1",
7 "Overall_Rating": "0.7" }

Some datasets will never be perfect

Example taken from [Vogel and Jiang, 2019]
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Datasets
Reuse Existing Datasets

Analyze datasets
▶ How it has been created?
▶ What are its features? (has to be part of your paper)

▶ How many instances are there?
Maybe just an example dataset or an excerpt?

Is the data balanced?

Does it have biases?

→ Come back to the dataset during the analysis of the results

Figure from [Ribeiro et al., 2016]
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Datasets
Reuse Existing Datasets

Gold standards are not always "golden" [Jha et al., 2017]
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▶ Datasets might be bound to a certain point in time
Datasets can be outdated [Jha et al., 2017]
A dataset may not fit to data that you use in your algorithm

Figure from [Jha et al., 2017]
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Datasets
Creating a Dataset

Don’t underestimate the effort

▶ If you use humans as annotators...
▶ Objectivity: use more than one person to annotate data

Ensure that all have the same understanding of the task
▶ Measure and report the interrater agreement

(Cohen’s kappa [Cohen, 1960], Fleiss’ kappa [Fleiss and Cohen, 1973],
F1-measure [Hripcsak and Rothschild, 2005], Percent
Agreement [Shweta et al., 2015])

▶ Define how you handle conflicts
Think about using a tool to pre-annotate data [Jha et al., 2017]

Reminder Do not rely on internet resources to stay where they are!
(Download the data, use the internet archive)
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Datasets
Dataset Generators

▶ Domain-dependent
(LUBM [Guo et al., 2005],
PoDiGG [Taelman et al., 2019])

▶ Domain-independent
(Lemming [Röder et al., 2021])

▶ Advantages

▶ Scalable datasets
▶ Focus on a specific scenario

▶ Limitations

▶ Bound to assumptions
▶ Might generate unrealistic

data

→ Can be helpful; real-world
datasets might be necessary

Figures from [Taelman et al., 2019] and [Duan et al., 2011]
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Datasets
Dataset Splits

Train Validation Test

System gets Ground Truth Yes Yes No
Model trained on Yes No No
Used for KPIs Maybe (sep) Maybe (sep) Yes

Splits may have an influence on the result [Shchur et al., 2018]
▶ Cross validation

Figure from https://www.frontiersin.org/files/Articles/517375/
fsurg-07-517375-HTML/image_m/fsurg-07-517375-g002.jpg
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Datasets
Dataset Splits

Figure from
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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Section 2

Algorithm Execution
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Algorithm Execution
Different Views

Algorithm Developer Benchmark Developer
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Algorithm Execution
Algorithm Developer

Do not try to implement the perfectly integrated system.
▶ You (typically) develop a research prototype!

Focus on the important part
Try to find a balance between hacking and necessary software
engineering.

Figure from https://imgs.xkcd.com/comics/the_general_problem.png
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Algorithm Execution
Algorithm Developer

Check your approach!
Check preprocessing
Use a small example set
Write unit tests
Do not try to achieve the perfect first step
(i.e., do not investigate the first interessting question / problem that
you find)

Store intermediate results (saves tons of runtime!)
Store final results for later analysis
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Algorithm Execution
Algorithm Developer

Does your approach make use of random numbers?
▶ How to ensure repeatability?

Make use of seed values to ensure repeatability
Different random number generators shouldn’t get the same seed

▶ More details at https:
//dice-research.org/news/2020-09-03-RandomnumbersJava/

Do not only run it once!
Run it n times and report average values with standard deviation

Figure from https://imgs.xkcd.com/comics/random_number.png
M. Röder (DICE): Evaluating Machine Learning 19 / 44
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Algorithm Execution
Algorithm Developer

Does your approach have (hyper-)parameters that should be optimized?
▶ Grid search
▶ Random search [Bergstra and Bengio, 2012]

▶ Bayesian optimization
(Nice depiction at
https://en.wikipedia.org/wiki/Bayesian_optimization)

Figure from [Bergstra and Bengio, 2012]
M. Röder (DICE): Evaluating Machine Learning 20 / 44
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Algorithm Execution
Algorithm Developer

Don’t let your test data leak into the training / optimization process

Figure from [Lones, 2024]
M. Röder (DICE): Evaluating Machine Learning 21 / 44



Algorithm Execution
Algorithm Developer

Use validation data

Figure from [Lones, 2024]
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Algorithm Execution
Algorithm Developer

Data Split vs. Feature Selection

Test data leaks into the training process

Figure from [Lones, 2024]
M. Röder (DICE): Evaluating Machine Learning 23 / 44



Algorithm Execution
Algorithm Developer

Figure from [Lones, 2024]
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Algorithm Execution
Algorithm Developer

Cross Validation vs. Feature Selection

Figure from [Lones, 2024]
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Algorithm Execution
Benchmark Developer

Why "benchmarks"?
▶ Can support introducing a "quasi standard" for

▶ Task definition
▶ Evaluation execution
▶ KPI measurement

▶ Improves repeatability
▶ Eases the research in an area

M. Röder (DICE): Evaluating Machine Learning 26 / 44



Algorithm Execution
Benchmark Developer

▶ Benchmarks should be
▶ Based on the problem definition
▶ Independent of the system implementation

Do not trust the benchmarked system!
Do not rely on measures provided by the system

▶ Systems may
▶ Answer with an unexpected value
▶ Not answer at all
▶ Misbehave

▶ Different colored systems...
▶ Blackbox (Typically, the easiest way)
▶ Grey/Whitebox

▶ Allows for additional analysis
▶ Choke-point-based design1

Assumptions might be unfair

1https:
//projects.ics.forth.gr/isl/RDF-Benchmarks-Tutorial/index.html

M. Röder (DICE): Evaluating Machine Learning 27 / 44
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Section 3

KPIs
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KPIs
Overview

Effectiveness vs. Efficiency

An evaluation should cover both
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KPIs
Effectiveness

Examples
▶ Accuracy, Precision, Recall, F1
▶ ROC curve, REC curve
▶ MRR, Hits@N
▶ (R)MSE
▶ Perplexity
▶ Correlations (Pearson, Spearman, Kendall’s Tau)
▶ Similarity / distance measures (Cosine, KL-divergence, BLUE, ROUGE,

Meteor)

M. Röder (DICE): Evaluating Machine Learning 30 / 44



KPIs
Efficiency

Examples
▶ Qps, QMpH
▶ CPU, user or wall clock time
▶ RAM
▶ Disk space
▶ $
▶ CO2 equivalent

Wall clock time is an easy way to cover Efficiency

M. Röder (DICE): Evaluating Machine Learning 31 / 44



KPIs
Hints and Pitfalls

Be aware of a KPI’s features and limitations: Accuracy

Figure from [Lones, 2024]
M. Röder (DICE): Evaluating Machine Learning 32 / 44



KPIs
Hints and Pitfalls

Be aware of a KPI’s features and limitations: F1-score

Ground truth

True False

Pr
ed

. True TP FP
False FN TN

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

F1 =
2PR
P+ R

=
2TP

2TP+ FP+ FN

Be aware of corner cases: Precision and Recall

P =
TP

TP+ FP
R =

TP
TP+ FN
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KPIs
Hints and Pitfalls

Ensure that the KPI fits to your goal

Figures from [Chang et al., 2009]
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KPIs
Hints and Pitfalls

▶ Summarizations
▶ Micro, macro, weighted average

Arithmetic mean should always come with the standard deviation

Comparison is necessary
▶ Related work

Baselines
▶ Random guesser
▶ Most frequent class
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KPIs
Human Evaluation

What about humans?

However, human evaluation is sometimes needed...

Figure from https://i.redd.it/7sritiz8e3951.jpg
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KPIs
Human Evaluation

▶ If your experiment is more complex, please get help / look for other
sources to prepare it!
The description is very important; even "experts" might not always
know what you want

Try to use established evaluation shemes, e.g.,
▶ System Usability Scale [Brooke, 1996]
▶ Pairwise comparisons might be easier than absolute

ratings [Saaty, 2008]
▶ Word or topic intruder experiment [Chang et al., 2009]

An established scheme gives no guarantee of success

Test your evaluation with some participants
Use your network to get participants
It can be possible to mimik human raters [Röder et al., 2015]

M. Röder (DICE): Evaluating Machine Learning 37 / 44
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KPIs
Human Evaluation

▶ If your experiment is more complex, please get help / look for other
sources to prepare it!
The description is very important; even "experts" might not always
know what you want
Try to use established evaluation shemes, e.g.,
▶ System Usability Scale [Brooke, 1996]
▶ Pairwise comparisons might be easier than absolute

ratings [Saaty, 2008]
▶ Word or topic intruder experiment [Chang et al., 2009]

An established scheme gives no guarantee of success

Test your evaluation with some participants
Use your network to get participants
It can be possible to mimik human raters [Röder et al., 2015]

M. Röder (DICE): Evaluating Machine Learning 37 / 44



KPIs
Intrinsic vs. Extrinsic Evaluation

▶ What if we cannot find any good KPI?

▶ Extrinsic evaluation with a downstream task
[Jurafsky and Martin, 2020]

▶ Examples:
▶ Link prediction for knowledge graph embeddings
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Section 4

Combination
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Experiment Planning

Plan your experiments beforehand!
Do you need specific hardware?

How long will your experiment(s) take?
▶ Try to estimate the runtime

▶ Try on a “typical” dataset
If you tried it on a small dataset, take runtime complexity into account

▶ Example: Experiments measuring the robustness of knowledge graph
embeddings against non-adversarial attacks
▶ 7 Datasets
▶ 5 Knowledge Graph Embedding algorithms
▶ 4 Pertubation ratios
▶ 3 Attack surfaces
▶ Attacks are random → repeat 5 times
▶ = 2100 Experiments
▶ with ∼1h per = 2100h = 87.5 days
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Experiment Planning

How long will your experiment(s) take? (cont.)
Solution 1: Run experiments in parallel

Don’t run multiple experiments in parallel on the same machine

Ensure that the hardware and software are equal (comparability)

Solution 2: Prioritization
▶ Which experiments are the most important?
▶ Example above: start with the most important dataset / model

combination

Is one of the experiments more important than the others?
Prioritize as explained above

(Also known as “fail fast”)
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Summary Over Datasets

Averaging over datasets is in many cases not allowed [Demšar, 2006]

Use statistical tests instead (e.g., Wilcoxon Signed-Rank test)

Figure from [Röder et al., 2015]
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Be "FAIR"
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That’s all!
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