OPAL

OPEN DATA PORTAL

Deliverable D8.2
Erster Portalprototyp

Autoren: Zafar Habeeb Syed, Afshin Amini, Adrian Wilke, Matthias Wauer

Vertraulich
31.12.2018
31.01.2019
APS8
Software
Final

1.0

Kurzfassung:

Das OPAL-Projekt entwickelt einen Prototyp fiir ein umfassendes Open-Data-Portal mit Fokus
auf Metadaten. In diesem Bericht wird die erste Version dieses Prototyps vorgestellt. Darin
werden die einzelnen Komponenten des Prototyps und deren Komposition beschrieben.
AufRerdem wird auf die gegenwartigen Daten- und Kontrollfliisse eingegangen.

Schlagworte:

OPAL, Portal, Prototyp, Komponenten

G FUND

® Das Startkapital fiir die Mobilitdt 4.0

% Bundesministerium
fiir Verkehr und
digitale Infrastruktur

D8.2 - Erster Portalprototyp

Inhalt

Introduction

Description of the Portal Components

Extraction
Squirrel
Transformation
Data Analysis
Integration
Access
Applications
Storage

Integration of the Portal

Data Flow
Docker Composition
Control Flow / Invocation

Conclusions

=)
F

O A P PPN WENN

© N N N

(-]

D8.2 - Erster Portalprototyp

1 Introduction

In OPAL work package 8 we aim to integrate the developed components of OPAL into an
extensible component-based Web application. According to the description of work, this task
should conform to the architecture described in Deliverable D1.3 (see Figure 1).

' ™ '
—1 Applications OPAL Portal City App Social Bot [CKAN J
- 3 J
a SR
. OPAL Storage
Search QA Monitoring CKAN
— A REST
ccess AP decat- L
Slicing Licence Integration ext _\‘-—-—/
- ~/ OPAL RDF
- ~ Store:
Configuration Configuration
» fiitt— Integration LIMES | gur DEER gur <) Integrated
2 Interlinking Extensions Fusion Extensions Metadata
o \ J (RDF),
g
w
@ Ve ~ Raw data
= - ST (unstructured
Analysis etadata . . chema in RDF
m oei . Frame- Extraction Qua(!Rf/EP#J ain Extraction -)
Analysis | one Plugin (MXP) () Plugin (SXP)
\,_‘_‘_______/
L Y //;__1\
\\‘_‘_¥—____‘/
_{Transformation Data Conversion Framework Configuration }/
Crawled Raw
/ Data
«{ Extraction | Squirrel Crawler OPAL Extensions (Access, Scheduler)
- > ‘\

Source Catalogs
(Seeds)

Figure 1: OPAL Architecture (from D1.3)

Consequently, in this Deliverable we describe the first version of the portal prototype. The
document is structured as follows: All portal components are described individually in Section 2,
including introductions of components that are work in progress. In Section 3 we discuss how
these components are integrated into the portal, including the data flow, control flow, and

component composition.

2 Description of the Portal Components

The OPAL platform has been designed as a layered architecture. In the following, a short

description of layers is given.

(%) opAL

o

o/

D8.2 - Erster Portalprototyp

2.1 Extraction

This layer contains the functionality for focused crawling of Open Data sites. The Squirrel
crawler has been developed for the extraction of metadata from Open Data portals, for which it
has been extended with OPAL-specific extensions for accessing specific sources efficiently and
also scheduling the crawling process as necessary.

2.1.1 Squirrel

Squirrel core is divided into two main components: frontier and worker. The execution of Squirrel
requires one frontier running, while the user can set how many workers the system supports. The
frontier is initialized by a list of input seeds. It will add all the identified URI's to a queue and to a
filter. Once the frontier receives a call from workers, will give a subset of the URI's in the queue
to the workers.

The worker will only be initialized if there is a frontier available to connect to. Initially, it will
request new URI's to crawl to the frontier. Then, it will fetch data available from the URI. After
fetching, it will analyze the fetched file to extract triples from it and thus, store data in a sink. In
the end, all the URI's found by the analyzer will be serialized and sent to the frontier. The frontier
receives these new URI's, checks if they are present in the filter and add to the queue only the
ones that are not.

The frontier also registers the IP number of the URI and assigns that IP to the first worker that
requests it. By doing that, a worker will be responsible for crawling URI's from the same IP
number.

Squirrel Core Architecture

el LIHN

Figure 2: Architecture of the Squirrel crawling framework

2.2 Transformation

In this step, all URIs, every resource, and every property are adjusting to becoming OPAL
vocabulary confirmed (see Deliverable D4.1). For this, a conversion tool is designed that in
parallel for each dataset fetches all distributions, publisher, properties, and objects; then, does
the conversion of them(see Deliverable D4.2). after that, for each data set CIVET component is

(%) oPAL 3

o

D8.2 - Erster Portalprototyp

used to calculate quality metrics for it (see Deliverable D3.1). Finally, it stores the result in a
TripleStore.

2.3 Data Analysis
When raw information from a Web site or API has been extracted, a data analysis framework
takes care of three aspects:

1. Further metadata extraction (e.g., analyzing the description text of the dataset and
linking resources like licenses in a knowledge base) via the MXP component. A first
version will be developed for Deliverable D3.3.

2. Measuring the metadata quality with metrics to be defined in Deliverable D3.1 via the
CIVET component, described in Deliverable D3.2.

3. Attempting to extract schema information for well-known content types via the SXP
component (in collaboration with the LIMBO project, a first version is to be developed for
Deliverable D3.4).

2.4 Integration

The data integration layer consists of two components. The interlinking component, based on the
LIMES framework, attempts to determine identity sets of crawled resources describing the same
dataset (typically from different sources), as well as related datasets (based on different
features). The fusion component, using the DEER framework, is applied for merging the
potentially conflicting metadata items from different sources into a coherent representation for
a single dataset. Both components are available, but their integration in the portal has not been
executed yet.

2.5 Access
The data access layer contains the REST API, which consists of
1. OPAL-specific services for searching, monitoring, question answering (QA), dataset
slicing and license integration. CIVET for quality measurement is now available via CLI,
and also java importing package. The other components are not available as a service in
the current version.
2. the CKAN API as a common de-facto standard for accessing metadata, aiming to enable
easy reusability of the integrated enhanced metadata.
The CKAN API is actually provided as part of the CKAN installation in the application layer. The
API interface to the OPAL architecture is enabled by a service which will be based on the
CKANext-DCAT plugin, which allows converting between the DCAT RDF formats and the internal
relational metadata representation in CKAN, and also CKANext-Harvest which is used to provide
a common harvesting framework for CKAN extensions and adds a CLI and a WUI to CKAN to
manage harvesting sources and jobs. In order to provide datasets to be harvested by
CKANext-Harvest a TripleStore dumper has been implemented that dumps RDFs in a TripleStore
into paginated files to harvest them page by page (not facing memory problems) in CKAN, and
also a file server is designed that make the paginated files available for CKANext-Harvest. For
CKAN be able displays quality metrics appropriate RDF-Profiling is set in the extended parser
and serializer classes.

2.6 Applications
The application layer provides four distinct services:

{£ 3% OPAL 4

o

D8.2 - Erster Portalprototyp

1. The OPAL portal is the prototype implementation of the open data portal, including
comprehensive search functionality over the integrated metadata and visualizations, e.g.,
for quality metrics. Designing and implementation of the OPAL portal have been started
and the first prototype will be delivered by Deliverable D8.3.

2. The city app is a mobile application for finding relevant datasets, primarily based on the
search API. The development will start now, to be finished for Deliverable D7.3.

3. The social bot suggests datasets in certain social platforms (e.g. Twitter) using the QA
API in the access layer. The development will start now, to be finished for Deliverable
D7.4.

4. CKAN provides the integrated metadata of OPAL in a traditional CKAN portal Web
interface, primarily to enable a preliminary user interface and easy reuse of existing
CKAN connectors for accessing the OPAL data.

Datasets QOrganizations Groups About

Search data

Willkommen auf dem OPAL CKAN

In diesem CKAN-Portal finden Sie aufbereitete Metadaten offener Datensétze
des OPAL-Forschungsprojekts.

Popular tags inspireidentifiziert infoMapAccessService
Bebauungsplan

B diceupb
‘ Dice Group at the University of Paderbom

Bebauungspldne Gemeinde Berkatal - BP_636002_2142_005_002

Der Darstellungsdienst zeigt die Geltungsbereiche der rechtskraftigen
Bebauungsplane der Gemeinde Berkatal

‘13puon Tou opyaviouod

Tabliczka liczydta organizacii

Figure 3: Screenshot of the CKAN user interface of the first OPAL portal prototype.

=)
o
F
()]

D8.2 - Erster Portalprototyp

Organizations diceupb

Eraldus- ja
abrundungssatzung
dirstheck

Folloseers

0

] Ceganization

diceuph

Dhice Group at the Uinversity of Paderbom
read mare

Boclal
B8 Twier

B Fapebook

Eraldus- ja ...

& Dainss=t

i Groups

& Actretty Stream

Eraldus- ja abrundungssatzung dorstheck

«pian urbanisico de defmiacen y abnandungssatzung oberates dirsthecks

Data and Resources

m Unrined rescurce

0uD20 Land uss

Additional Info

Fledd

Lasi Updabed
Craated

ARernate identfler
Conforms o

Erd of temporal extent

Frequency

GuID

identifier

Language

Modified

Publisher LR1

Publisher email
Publisher rasme
‘Spakiad A1

‘Start of termporal extent

Theme

provenance

spatial

Inspirsidenifiziet

Value

January B, 2018, 4242 PR (UTC+04:00)
December 20, 2048, 12:04 PM {UTC+01:000
[e2S0cdS-ddol-4 1c5-bo3Z-of IndaTes3877)

[hitpindih red well
knoamigend dird b 2o Fald &84 Sca a1 bedada1 2437

196870423100 00:00

Rép:ipublcatiors. sumpa suresgurceauthontyfraguency R
REG

hipciiprojed-
omaldscatasethitp ewropeandataportal_ew set datn 04
SeciSE 3134 febd_cell 440380030001

D43ec192-3134-tebd-on |- 2265800000
1567-04-F3T00 00:00

it publicalions eurcpa. euescurte aUihorEy Sanguages
ER7]

2013120370 0000

Pp-TEiE neL e
Knwnigerid M 20 30c0c 04 0 ed 300G badT 207 T84

maliocpostsisle @vgnassa de
Am Adeizheimer Hal 1, 30377 Massau

RipiTdit. nel wel-
knram/geridirdEhM 5550881 305442003004 304 0cTc B 0es

159670416700 00:00

[hitospublicadions suropa. eufescuriedauthoriy data-
FamaiTECH"]

Pipciprojssl-

opal detdabasethitp swropeandalaporal ew ==t dala 04
Zec{82 3134 el _celdl 4403080000001

tpoidiib. neti weil-
known/ipenidirdiih NBalb 1aate 8804 ddebbbbbI T o3 3d bb
{type™: "Folygon”, “coomdinates™ [[[T.76534,50. 275150

[7. 70833, 30 ZT4BLIT 18833, 50 2700, [T. I6034, 30.2TT05]
[F.78834 S0.2THE] T

Figure 4: Screenshot of dataset details in the first version of the CKAN Ul in OPAL.

2.7 Storage

OPAL data is stored in two distinct areas. The Squirrel crawler stores downloaded documents in a
TripleStore (Apache Fuseki in this version) with a different endpoint for different portals. All
other data, including the quality metrics and all metadata (OPAL vocabulary confirmed), are
managed as RDF in another triple store (Apache Fuseki in this version). Both data are available
via an SPARQL endpoint. In addition, metadata of datasets (including quality metrics) is also
available in CKAN, in which the user can search, filter and also browse the data set.

OPAL

OPEN DATA PORTAL

D8.2 - Erster Portalprototyp

3 Integration of the Portal

In this section we discuss how the previously described components interact in the portal
prototype.

3.1 Data Flow

In the current version of OPAL, the data flow is as shown in the following Figure 1. First, Crawler
harvests data from the portals and URLs, and store it in a TripleStore, then conversion
component makes sure entities are OPAL-Vocabulary confirmed, then pass those data to CIVET,
after calculating quality measurements the RDF results are stored in a TripleStore. Then,
TripleStore Dumper exports all RDFs in paginated files. Finally, CKANext-Harvest collects all
files and stores their metadata in its own database.

Note that in the first four steps data is not passed directly, but managed in a triple store, as
detailed in Section 3.3. As such, the default interface between these components is SPARQL.

CRAWLER Convertion CIVET TripleStore Dumper
Component

Figure 5: Data flow in the first OPAL portal prototype (simplified).

3.2 Docker Composition

The first prototype of OPAL has been implemented using Docker Compose in order to orchestrate
the different components, as specified in Deliverable D8.1. The overview of the docker-compose
file is as shown in Listing 1.

version: '2'
services:
ckan-db:
image: postgres:9.6.0
container_name: ckan-hobbit-db
environment:

volumes:
restart: always

ckan-solr:
image: earthquakesan/ckan-solr:2.8.0
container_name: ckan-hobbit-solr
restart: always

ckan-redis:
image: redis:4.0.11
restart: always

ckan:
image: mwauer/ckan:2.8.1-opal
environment:

(%) oPAL 7

https://github.com/projekt-opal/opal-docker-compose

D8.2 - Erster Portalprototyp

volumes:
restart: always
ports:
fileStorage:
image: busybox
volumes:
- [files
fileServer:
image: mnafshin/simple_file_server
volumes_from:

- fileStorage:ro
restart: always
ports:

fuseki-data:
image: busybox
volumes:

- [fuseki

civetTripleStore:
image: stain/jena-fuseki
volumes_from:

- fuseki-data:rw
ports:

environment:

conversionTool:
image: mnafshin/conversion-tool
environment:

ports:
tripleStoreDumper:
image: mnafshin/triple-store-dumper
volumes_from:
- fileStorage:rw
environment:

ports:

Listing 1: Docker Compose configuration of the first OPAL prototype

e

D8.2 - Erster Portalprototyp

The following services are included in this composition:

e ckan-db is a postgres database container that stores CKAN’s data (like user credentials,

metadata of harvested datasets, harvesting sources, etc.).

e ckan-solr is an Apache Solr container which is used in CKAN as an internal text search

engine.

e ckan-redis is used as a queue (Message Broker) for harvesting datasets in
CKANext-Harvest plugin. It is used to bring up gather_consumer and fetch_consumer
queues.
ckan is the CKAN instance itself.
fileStorage is used to share files between tripleStoreDumber and fileServer.
fileServer is used to make files available for CKANext-Harvest plugin.
fuseki-data is used to store Apache Fuseki data permanently.
civetTripleStore is an Apache Fuseki container that store RDFs after converting by
conversion-tool and extended by CIVET.

e conversionTool is the conversion-tool service that also runs CIVET after converting each
dataset’s entities.

o tripleStoreDumper is the TripleStore Dumper service that dumps civetTripleStore in
fileStorage.

3.3 Control Flow / Invocation

In this version of the OPAL controlling flow between different components is triggered manually.
First Squirrel starts crawling and storing in a TripleStore. Then, conversion-tool is triggered to
make the entities OPAL-Vocabulary confirmed and quality metrics are calculated for each
dataset, and the results are stored in a TripleStore. After that, tripleStore Dumper is called to
store all RDFs in the previous step TripleStore in paginated files. Finally, CKANext-Harvest is
called for each file which is generated in the previous step, i.e. for each file, a harvesting source,
and a job is created, respectively.

4 Conclusions

In this deliverable, we have described the first version of the OPAL portal prototype. For this
version, around 800K datasets and their distributions have been harvested and are available in
the CKAN portal, which provides the initial user interface and an API for programmatic access to
the linked data.

Next, we will extend the prototype by automating the interaction between the components via
the message bus, such that newly crawled information will be automatically processed and
updated.

