

Deliverable D3.2
Quality Analysis Component

Autoren: Adrian Wilke
Reviewer: Matthias Wauer

Veröffentlichung Vertraulich
Fälligkeitsdatum 31.12.2018
Fertigstellung 29.01.2019 (aktuelle erweiterte Version)
Arbeitspaket AP 3.1 Qualitätsanalyse
Typ Software Dokumentation
Status Final
Version 1.1

Abstract:
This deliverable describes the current architecture and implementation of the OPAL metadata
quality analysis framework “Civet”. In addition to the technical specifications, relevant previous
works are described and used as foundations for the development.

Schlagworte:
Metadata, Quality Analysis, Software

D3.2 - Quality Analysis Component

Inhalt
Foundations 2

Underlying works in the OPAL project 2
Current state of the project 2
Quality dimensions and metrics 3
Vocabulary and data structures 4
Data Acquisition 5

Analysis of available data 5
RDF concepts 5
Datasets: Structure 6
Datasets: Number of records 6
Distributions: Structure 7
Distributions: Number of records 7
Catalogs: Instances 7
Publisher/Agent: Structure 8
Publisher/Agent: Number of records 8

Architecture and implementation 9
Datasets, distributions, and quality metrics 9
Implementation of required metric properties and metric result types 10
Civet architecture 11

Usage of the component 12
Civet Java API 12
Civet Command line interface (CLI) 12

Outlook: Future development 13

References 13

1

D3.2 - Quality Analysis Component

1 Foundations
Foundations of the ​OPAL quality analysis component “Civet” ​consist of related OPAL
components, data structures, and available data. The foundations are described in the following
sections.

1.1 Underlying works in the OPAL project
This section gives an overview of OPAL components and deliverables, which form a basis of the
quality analysis component.

1.1.1 Current state of the project
The OPAL Civet component has been implemented for batch-processing of metadata records. A
specification of the integration of metrics and the respective required data fields is completed.
Additionally, first metrics values for approximately ​880,000 metadata records (datasets) and
their related ​1,330,000 distributions (available form of datasets, e.g. CSV or RSS) are computed
and integrated into the OPAL RDF database.
All previous work packages have been processed. However, there are ongoing successive
improvements to individual implementations of the existing components. Related delays
resulted, inter alia, from the integration of additional data sources. The integration of the
additional sources was not planned at the beginning of the project, but resulted in an extended
database, which is also utilized in the Civet component. However, the additional workload in the
past caused a delayed start and completion of the Civet component due to missing data and
specifications. All of the OPAL components are continuously extended throughout the entire
project period. The following tables presents the current states of initial component and
specification versions:

Deliverable Description of initial versions Current state

D2.1 Crawler component Completed on time

D3.1 Specification of quality criteria Completed on time

D4.1 Specification of RDF vocabulary Completed

D4.2 RDF conversion component In progress

D3.2 Quality analysis component Completed

Table: Current state of initial components (as of 2019-01-17)

2

D3.2 - Quality Analysis Component

1.1.2 Quality dimensions and metrics
The OPAL quality framework Civet implements the specifications of quality criteria, which were
defined in [OPAL.D3.1]. The following 13 quality dimensions and 48 metrics have been worked
out:

No. Criterion No. Criterion No. Criterion

Expressiveness Trust Interlinking

1 Extend 16 Provider identity 34 Labeled data

2 Weighted extend 17 Trusted provider 35 Linked data representation

3 Categorization 18 Metadata authenticity 36 Metadata interlinking

4 Description* 19 Usage of digital signatures Contactability

Temporal Community 37 Contact URL

5 Timeliness 20 Communication 38 Contact Email

6 Update rate 21 Trust transfer 39 Classical contact
information*

Understandability 22 Correctness Access

7 Readability 23 Confirmation 40 Open metadata

8 Language errors Versatility 41 Retrievability

9 Example applications 24 Multiple serializations* Versioning*

Rights 25 Multiple languages 42 Version numbering*

10 Machine readable license* 26 Multiple access methods 43 Period of time*

11 Human readable license Representation Data

12 Known License 27 Open format 44 Open data format

13 Open License 28 Data format 45 Data format

14 Permission for commercial
use

 29 Machine processable 46 Machine processable data

15 Permissions* 30 Vocabulary 47 Unique data identifier

 31 Date Format 48 Multiple data serializations

 32 Unique identifier

 33 Locality*

*Extensions of the literature review by the data-driven-approach

Table: Overview of OPAL quality dimensions and metrics

3

D3.2 - Quality Analysis Component

1.1.3 Vocabulary and data structures
The OPAL vocabulary was defined in [OPAL.D4.1]. The following standardized (RDF) vocabularies
are re-used in the OPAL Civet component to describe, access, and store metadata records:

● Dublin Core​ [VocabDC]
● Data Catalog Vocabulary (DCAT)​ [VocabDCAT]
● Friend of a Friend (FOAF)​ [VocabFOAF]
● Data Quality Vocabulary (DQV)​ [VocabDQV]
● Quality assessment for Linked Data (LDQD) ​[VocabLDQD]
● Simple Knowledge Organization System Namespace Document (SKOS)​ [VocabSKOS]

In addition to the quality dimensions and metrics describes in the previous section, the following
quality categories are used to combine individual quality dimensions:

Figure: Top-level view of quality categories and dimensions

The vocabulary is utilized in the Civet component to efficiently access metadata fields and store
metric values for metadata records. Currently available data predicates and datasets are
analyzed in Sec. ​Analysis of available data​.

4

D3.2 - Quality Analysis Component

1.1.4 Data Acquisition
Input data for the Civet component is first acquired by the crawler component Squirrel
[OPAL.D2.1]. Second, the available data is converted by the component for conversion
[OPAL.D4.2] according to the OPAL vocabulary [OPAL.D4.1]. The resulting structures and values
are available in the OPAL TripleStore. The available prepared data is analyzed in the following
section.

1.2 Analysis of available data
The quality component uses iterative data-driven development. To implement individual metrics,
currently available types of data are analyzed to be utilized afterwards. The data depends on the
implementation of precedent components and processed data sources.

RDF concepts
The most general data types are ​concepts​. These represent basic object types, which provide data
structures to be utilized. Main data sources are represented as dcat:Catalog, which refer to
metadata records (dcat:Dataset). These records can be available in different data formats
(dcat:Distribution). The following concepts are currently available:

SELECT DISTINCT ?concept FROM <http://projekt-opal.de> WHERE { [] a ?concept} ORDER BY
?concept
--
| ​concept​ |
==
| <foaf:Agent> |
| <http://purl.org/dc/terms/Frequency> |
| <http://purl.org/dc/terms/LinguisticSystem> |
| <http://purl.org/dc/terms/Location> |
| <http://purl.org/dc/terms/PeriodOfTime> |
| <http://purl.org/dc/terms/ProvenanceStatement> |
| <http://purl.org/dc/terms/Standard> |
| <http://www.w3.org/2006/vcard/ns#Kind> |
| <http://www.w3.org/2006/vcard/ns#Organization> |
| <http://www.w3.org/2006/vcard/ns#VCard> |
| ​<http://www.w3.org/ns/dcat#Catalog>​ |
| ​<http://www.w3.org/ns/dcat#Dataset>​ |
|​ <http://www.w3.org/ns/dcat#Distribution>​ |
| <http://xmlns.com/foaf/0.1/Agent> |
| <http://xmlns.com/foaf/0.1/Organization> |
| <http://xmlns.com/foaf/0.1/Person> |
| <vcard:Kind> |
| "skos:Concept" |
--

Listing: Available RDF concepts (as of January 2019)

5

D3.2 - Quality Analysis Component

Datasets: Structure
The most important concept is ​dcat:Dataset​. It provides basic metadata fields (i.e. title,
description, license), which can be processed to compute quality metrics. The following
predicates are currently available for datasets:

SELECT DISTINCT ?predicate FROM <http://projekt-opal.de> WHERE { ?s a
<http://www.w3.org/ns/dcat#Dataset>​ . ?s ?predicate ?o } ORDER BY ?predicate

| ​predicate​ |
===
| <http://purl.org/dc/terms/accrualPeriodicity> |
| <http://purl.org/dc/terms/conformsTo> |
| <http://purl.org/dc/terms/description> |
| <http://purl.org/dc/terms/identifier> |
| <http://purl.org/dc/terms/issued> |
| <http://purl.org/dc/terms/language> |
| <http://purl.org/dc/terms/license> |
| <http://purl.org/dc/terms/modified> |
| <http://purl.org/dc/terms/provenance> |
| <http://purl.org/dc/terms/publisher> |
| <http://purl.org/dc/terms/relation> |
| <http://purl.org/dc/terms/spatial> |
| <http://purl.org/dc/terms/temporal> |
| <http://purl.org/dc/terms/title> |
| <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> |
| <http://www.w3.org/2002/07/owl#versionInfo> |
| <http://www.w3.org/ns/adms#identifier> |
| <http://www.w3.org/ns/dcat#contactPoint> |
| <http://www.w3.org/ns/dcat#distribution> |
| <http://www.w3.org/ns/dcat#keyword> |
| <http://www.w3.org/ns/dcat#landingPage> |
| <http://www.w3.org/ns/dcat#theme> |
| <http://xmlns.com/foaf/0.1/page> |

Listing: Available predicates for the Subject dcat:Dataset (as of January 2019)

Datasets: Number of records
Besides the structure of datasets, the amount of available metadata records for datasets is
important to provide an extensive catalog of evaluated metadata. At the current state,
approximately ​880,000 datasets​ are available in the OPAL repository:

SELECT DISTINCT (COUNT(?dataset) as ?datasets) FROM <http://projekt-opal.de> WHERE { ?dataset
a <http://www.w3.org/ns/dcat#Dataset> }

| ​datasets​ |
============
| ​879550​ |

Listing: Number of available datasets (as of 2019-01-16)

6

D3.2 - Quality Analysis Component

Distributions: Structure
The concept dcat:Distribution represents accessible data of dcat:Datasets in different formats.
The following predicates are currently available:

SELECT DISTINCT ?predicate FROM <http://projekt-opal.de> WHERE { ?s a
<http://www.w3.org/ns/dcat#Distribution>​ . ?s ?predicate ?o } ORDER BY ?predicate

| ​predicate​ |
===
| <http://purl.org/dc/terms/conformsTo> |
| <http://purl.org/dc/terms/description> |
| <http://purl.org/dc/terms/format> |
| <http://purl.org/dc/terms/issued> |
| <http://purl.org/dc/terms/language> |
| <http://purl.org/dc/terms/license> |
| <http://purl.org/dc/terms/modified> |
| <http://purl.org/dc/terms/rights> |
| <http://purl.org/dc/terms/title> |
| <http://spdx.org/rdf/terms#checksum> |
| <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> |
| <http://www.w3.org/ns/dcat#accessURL> |
| <http://www.w3.org/ns/dcat#byteSize> |
| <http://www.w3.org/ns/dcat#downloadURL> |
| <http://www.w3.org/ns/dcat#mediaType> |

Listing: Available predicates for the Subject dcat:Distribution (as of 2019-01-21)

Distributions: Number of records
At the current state, approximately ​1,330,000 distributions ​are stored in the OPAL database:

SELECT DISTINCT (COUNT(?distribution) as ?distributions) FROM <http://projekt-opal.de> WHERE
{ ?distribution a <http://www.w3.org/ns/dcat#Distribution> }

|​ distributions​ |
=================
|​ 1332779​ |

Listing: Number of available distributions (as of 2019-01-21)

Catalogs: Instances
Instances of the type dcat:Catalog represent collections of dataset metadata records. Currently,
three individual catalogs were integrated to the OPAL database.

SELECT DISTINCT ?catalog FROM <http://projekt-opal.de> WHERE { ?catalog a
<http://www.w3.org/ns/dcat#Catalog> } LIMIT 5

| ​catalog​ |
===
| <http://projekt-opal.de/catalog/​mcloud​> |
| <http://projekt-opal.de/catalog/​govdata​> |
| <http://projekt-opal.de/catalog/​europeandataportal​> |

Listing: Instances of type catalog (as of 2019-01-21)

7

D3.2 - Quality Analysis Component

Publisher/Agent: Structure
The concept foaf:Agent is used to represent contact information of publishers (data providers)

SELECT DISTINCT ?predicate FROM <http://projekt-opal.de> WHERE { ?s a
<http://xmlns.com/foaf/0.1/​Agent​> . ?s ?predicate ?o } ORDER BY ?predicate

| ​predicate​ |
===
| <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> |
| <http://xmlns.com/foaf/0.1/homepage> |
| <http://xmlns.com/foaf/0.1/mbox> |
| <http://xmlns.com/foaf/0.1/name> |

Listing: Available predicates for the Subject foaf:Agent (as of 2019-01-29)

Publisher/Agent: Number of records
At the current state, approximately ​200,000 agents​ are available in the OPAL repository:

SELECT DISTINCT (COUNT(?agent) as ?agents) FROM <http://projekt-opal.de> WHERE { ?agent a
<http://xmlns.com/foaf/0.1/Agent> }

| ​agents​ |
==========
| ​197553​ |

Listing: Number of available agents (as of 2019-01-29)

8

D3.2 - Quality Analysis Component

2 Architecture and implementation
This section describes the relationship among datasets, distributions, and resulting quality
metrics in the vocabulary. Afterwards, the implementation concept of required properties to
calculate metrics as well as the resulting value types are presented. Finally, a top-level view on
the architecture is described.

2.1 Datasets, distributions, and quality metrics
The computation of quality metrics depends on data of the underlying ​datasets and ​distributions​.
If, for instance, titles are required to evaluate values for a metric, titles of both, dataset and its
related distributions, are integrated. A computed result of a metric computation is stored as
dqv:QualityMeasurement and categorized by the related quality ​metric​, its ​dimension​, and
category​. The following figure shows an example of a data instance on the right side and used
concepts on the left side:

Figure: Example of data instances and types specified in the OPAL RDF vocabulary

9

D3.2 - Quality Analysis Component

2.2 Implementation of required metric properties and metric result types
The classification of individual data properties is implemented by instances of the class
DataObject​. A ​DataObject has a type (e.g. String or Integer), can contain multiple values (e.g. a
list of Strings), and has an ID (e.g. TITLE). The IDs are based on the analysis (see above) of
available data and vocabulary entries. IDs are defined as Java constants in an abstract class, as
presented on the left side in the following figure. They are typically defined and mapped with
regard to available properties in the OPAL TripleStore.
Each metric provides a list of ​required properties​. This allows to exactly access required values to
compute a result. Additionally, metrics provide an ​ID​, ​description​, ​type​, and an ​URI to store
results​. Every result is a float value, which can be interpreted as a ​counter​, a ​scale value between
0 and 1, or 0 to 5 ​stars​. The interpretation of the value depends on the predefined ​type of the
metric.
Finally, a method ​getScore() is provided to compute result values. This computation requires
input values, which are provided by a ​DataContainer object. The ​DataContainer object has to be
filled with required values before computing metrics. This is described in the following section.

Figure: Required properties of metrics and metric types

10

D3.2 - Quality Analysis Component

2.3 Civet architecture
A top-level insight into the architecture including the data flow and the control flow is presented
in the following figure. Note that the illustrated ​DataContainer occurrences (in light blue)
represent the same object in different states.

Figure: Top-level architecture of Civet components, data flow, and control flow

A typical execution of Civet can be described as follows:

1. An ​interface (e.g. the Java API or a command line interface) is used to select metrics and
datasets.

2. The ​Orchestrator creates a new ​DataContainer​. Depending on the previously specified
metrics, the required ​DataObject​s are created. At this state it is defined, which values
have to be loaded to compute the specified metric results.

3. The ​Orchestrator uses a ​DataAccessor to read the needed values. Values in ​TripleStores
are typically related to dcat:Dataset and dcat:Distribution entries. The values are stored
in the ​DataContainer​ for further processing.

4. The ​Orchestrator uses the previously specified metrics to create respective ​Metric
objects. These objects are used to call ​getScore(DataContainer) and to compute metric
result values.

5. The computed metric results are ​stored back in a database or ​returned via the initially
used interface.

11

D3.2 - Quality Analysis Component

3 Usage of the component
In the current stage, Civet can be used for batch processing. This is designed to process large
sets of datasets in named graphs. There are two options to access the component. These options
are described afterwards.

3.1 Civet Java API
The Java API offers all required methods to run Civet. It can be used as follows:

● Download the Java code or clone the repository at [CivetGitHub]
● Execute the methods of org.dice_research.opal.civet.CivetApi

The following methods are provided:

● setSparqlQueryEndpoint Sets the URL for SPARQL requests
● setSparqlUpdateEndpoint Sets the URL for SPARQL modifications
● setNamedGraph Sets the name of the database containing datasets
● computeAll Computes all metrics for specified datasets
● compute Computes specified metrics for specified datasets

3.2 Civet Command line interface (CLI)
Another option to run the Civet component is via command line interfaces. The current interface
uses the Java API and provides the following arguments:

usage: java -jar civet.jar
Civet: OPAL quality framework
 -q,--query <URL> SPARQL query endpoint, mandatory
 -u,--update <URL> SPARQL update endpoint, mandatory
 -g,--graph <graph> (Named graph, optional)
 -o,--offset <int> Offset for results (not datasets), mandatory
 -e,--end <int> Maximum number of results (not datasets), mandatory
 -l,--limit <int> (Number of results per iteration, optional)

Listing: Command line interface options for batch processing

To build the required JAR file, the Maven Assembly Plugin is used. Therefore, a prepared
configuration is provided via the Civet POM file, which is offered in the Civet repository
[CivetGitHub].

12

D3.2 - Quality Analysis Component

4 Outlook: Future development
Depending on the final interaction of OPAL components, ​additional interfaces can be developed.
Thereby, microservices would provide a solution for the requirements of message queues.

Further specifications of available ​quality metrics ​will also be implemented.

Especially for the upcoming topic and schema extraction (WP 3.4) as well as the data linking (WP
5.1) , ​the quality of refined metadata records is expected to increase​.

5 References

[CivetGitHub] ​OPAL Civet​ https://github.com/projekt-opal/civet
[OPAL.D2.1] ​OPAL Deliverable D2.1: Spezifikation der Crawler-Komponente
[OPAL.D3.1] ​OPAL Deliverable D3.1: Spezifikation von Qualitätskriterien
[OPAL.D4.1] ​OPAL Deliverable D4.1: Vokabularspezifikation
[OPAL.D4.2] ​OPAL Deliverable D4.2: Konvertierungskomponente
[VocabDC] ​Dublin Core​ http://dublincore.org/documents/dcmi-terms/
[VocabDCAT] ​Data Catalog Vocabulary (DCAT)​ https://www.w3.org/TR/vocab-dcat/
[VocabFOAF] ​Friend of a Friend (FOAF)​ http://xmlns.com/foaf/spec/
[VocabDQV] ​Data Quality Vocabulary (DQV) ​https://www.w3.org/TR/vocab-dqv/
[VocabLDQD] ​Quality assessment for Linked Data (LDQD)​ https://www.w3.org/2016/05/ldqd
[VocabSKOS] ​Simple Knowledge Organization System Namespace Document (SKOS)
https://www.w3.org/2009/08/skos-reference/skos.html

13

