

Deliverable D2.3​
Benchmark-Spezifikation und
Ergebnisse des ersten Crawlers

Autoren: Geraldo de Souza Jr
Reviewer: Adrian Wilke

Veröffentlichung Öffentlich
Fälligkeitsdatum 30.06.2019
Fertigstellung 31.07.2019, Version 1.0 / 20.08.2019, Version 1.1
Arbeitspaket AP 2
Typ Bericht
Status final
Version 1.1

Kurzfassung:
Zur Evaluation der ersten Version des OPAL Crawlers wurde ein Benchmark spezifiziert und
ausgeführt. Dazu wurden entsprechende Wissensgraphen generiert und der in OPAL erweiterte
Squirrel Crawler mit der Softwarelösung LDSpider verglichen. Zur Evaluation der extrahierten
Daten wurden die erwarteten zu extrahierenden Daten mit den tatsächlich extrahierten Daten
verglichen. Der Squirrel Crawler lieferte sowohl für HTTP Daten als auch für RDF Daten bessere
Ergebnisse.

Schlagworte:
Crawler, Crawling, Benchmark, Squirrel, Evaluation

D2.3 - Benchmark-Spezifikation und Ergebnisse des ersten Crawlers

Inhalt
Introduction 2

Benchmark Architecture 2

Benchmark Workflow 3

Evaluation 4

Results 4

1

D2.3 - Benchmark-Spezifikation und Ergebnisse des ersten Crawlers

1 Introduction
To evaluate the performance of ​Squirrel​ crawler, a benchmark comparison with ​LDSpider​ was
developed. The benchmark is developed using the ​Hobbit Platform​ , allowing us to compute
comparable results on standardised hardware.

The goal of the benchmark is to evaluate the following Key Performance Indicators (KPI’s) :

● Recall : Between 0 and 1 (Triples that were successfully retrieved)
● Time
● Memory Consumption (Not available yet)
● CPU Load (Not available yet)

2 Benchmark Architecture
The benchmark is composed by a set of Hobbit components. These components are:

● Benchmark Controller​: The central component of an experiment. It creates and controls

the data generators, task generators, evaluation storage and evaluation module.
● Data Generator:​ Generates the data needed for the evaluation. It creates a graph

containing linked data based on parameters provided by the user in the front end.
● System Adapter​: Starts the system (Crawler) selected by the user, initializing all the

dependencies and services necessary for that system execution.
● Evaluation Module​: Evaluates the output of both crawlers, comparing with the expected

output (generated data).

To simulate a properly environment for linked data, we create a custom LOD cloud, containing
three different types of nodes: HTTP, CKAN and SPARQL. Each one of this nodes receives the
graph from the Data Generator and adds the graph triple to each one of its type.
It is very unlike that a RDF file will reference a Sparql or Ckan endpoints and vice-versa. Because
of this characteristic, only the HTTP node reference its own graphs.

2

https://dice-group.github.io/squirrel.github.io/
https://github.com/ldspider/ldspider
https://project-hobbit.eu/

D2.3 - Benchmark-Spezifikation und Ergebnisse des ersten Crawlers

3 Benchmark Workflow

Figure 1: Benchmark Overall Schema

Figure 1 illustrates the overall schema of the benchmark, with the LOD Cloud interaction with
Hobbit components. The benchmark is started by invoking the Benchmark Controller, with the
parameters configured on the launch screen. These parameters are:

● System : Squirrel or LDSpider
● Number of Nodes
● Weight of CKAN node occurence (Between 0 and 1)
● Weight of SPARQL node occurence (Between 0 and 1)
● Weight of HTTP node occurence (Between 0 and 1)
● Average RDF Graph Degree
● Triples per Node
● Average Node Delay
● Seed

The Benchmark Controller invokes the ​Data Generation Module​, which will create the graphs
according to the parameters specified before. In the Sequence, the LOD Cloud Nodes will be
created and the graphs will be given for each one of then.
The System Adapter is responsible for initializing the crawlers. It will configure the environment
and start the necessary dependencies that each one of then requires. When the System Adapter
finishes the initialization, will receive the ​URI Seed List​ and will give it to the crawlers.
Both Crawlers stores the crawled data on a Sparql Database. The ​Evaluation Module​ finally,
analyzes the crawled data and compares with the expected data exposed by the LOD Cloud.

3

D2.3 - Benchmark-Spezifikation und Ergebnisse des ersten Crawlers

4 Evaluation
The goal of this Benchmark is to measure the reliability of crawled data extraction by both
systems. The evaluation is done by comparing the expected graph, generated by the Data
Generation Module against the stored data.
The ​Recall​ measure states the rate of triples that were expected and successfully recovered.
Normalized, the result can vary from 0 to 1 (0 indicating that nothing was crawled and 1 that
everything was recovered).
The Weighted Nodes (Ckan, Sparql and Http) can interfere in the Recall. The Node that has 0
node, will not be started by the Benchmark Controller, consequently will not have any data from
that node kind. If not zero, the Node type relevance on the final result will be equivalent to the
weight configured.

5 Results
The first results were achieved by running on two different scenarios. The first scenario consist of
using only the HTTP Nodes in the LOD Cloud, in order to analyze how both crawlers deals with
pure RDF data. The second scenario includes CKAN and Sparql resources as well, attributing a
weight of 1.0 to all the three nodes. The generated graph contains 1000 triples on both scenarios.

 Squirrel LdSpider

Average node graph degree 4 4

Average rdf graph degree 4 4

Number of Nodes 5 5

Triples evaluated 5009 5009

Triples per Node 1000 1000

HttpNode Weight 1.0 1.0

CkanNode Weight 0 0

SparqlNode Weight 0 0

Recall 0.998 0.893

Table 1. Http node only Scenario.

As described on ​Table 1​, the first scenario with Http Nodes only give us a recall of 0.998 and
0.893 to Squirrel and LdSpider, respectively. Despite the Squirrel clear advantage, it was
expected a value 1.0, where all the triples were successfully crawled. We will investigate the
crawler to see what it is avoiding some triples to not be crawled.

4

D2.3 - Benchmark-Spezifikation und Ergebnisse des ersten Crawlers

 Squirrel LdSpider

Average node graph degree 2 2

Average rdf graph degree 5 5

Number of Nodes 3 3

Triples evaluated 3003 3003

Triples per Node 1000 1000

HttpNode Weight 1.0 1.0

CkanNode Weight 1.0 1.0

SparqlNode Weight 1.0 1.0

Recall 1.0 0.5

Table 2. Multi nodes run scenario.

The difference between two crawlers really appears when is include other nodes, as show on
Table 2​. Squirrel reaches 1.0 and LdSpider gets 0.5, meaning that LdSpider found only the data
from the Http Node. Considering the first scenario, is possible to guess that the 1.0 value is
rounded, with minor missing triples now interfering in the final result of this run.
In future experiment runs, we will test different weights, rdf and graph degrees, triple count and
number of nodes to see in more details the evaluation of both crawlers.

5

