

Deliverable D2.1
Spezifikation der Crawler-Komponente

Autoren: Matthias Wauer, Geraldo de Souza, Adrian Wilke, Afshin Amini

Veröffentlichung Öffentlich
Fälligkeitsdatum 30.06.2018
Fertigstellung 30.06.2018
Arbeitspaket AP2
Typ Bericht
Status Final
Version 1.01

Kurzfassung:
In this deliverable we specify the functional and non-functional requirements and architectural
relationships of the the OPAL crawling component. We specify required interfaces and analyse
existing crawling frameworks, including a decision on a specific framework to extend in the
project. Furthermore, we briefly discuss the initial prototypical implementation for validating
the specification.

Schlagworte:
crawler, focused crawler, framework, extraction, specification

D2.1 - Spezifikation der Crawler-Komponente

Inhalt
Introduction 2

Motivation 2
Goals and non-goals 2

Requirements for the crawler component 3
Functional requirements 3
Non-functional requirements 4

Interfaces 5
Interaction with other components in OPAL 5
Operations 6
Data formats 7

Prototypical implementation 7
Considered existing crawler frameworks 7
Evaluation of existing crawler frameworks 9
Initial implementation 10

Conclusions 11

1

D2.1 - Spezifikation der Crawler-Komponente

1 Introduction
The primary goal of OPAL is to enable users to find open data easily by harvesting, analysing and
integrating available metadata from different Web sources. In this deliverable, we will focus on
the first step towards this goal: the identification and extraction of metadata from Web pages
describing data sets. We will refer to the general requirements gathered in Deliverable D1.1 and
the analysis of data sources in Deliverable D1.2.

1.1 Motivation
Open Data is published on a wide range of Web sites. While several of these sites are built on
standard solutions like CKAN, many use custom implementations and provide data set
descriptions in very different formats. Depending on the respective portal, the metadata of these
data sets is placed in varying HTML elements, sometimes hidden in semi-structured data. Hence,
the harvesting has to be flexible enough so it can be adapted to these different sources. An
extreme example for this case is the MDM portal, which requires certificate-based authentication
to crawl the metadata.
As shown in Deliverable D1.2, many data sets relevant for OPAL have metadata scattered in
different locations. For example, metadata for the “RadwegeGis Hamburg” data set (see Section
6.3.4 in D1.2) is available on mCLOUD, Transparenzportal Hamburg, European Data Portal and
GovData.de. Additionally, there is a processed version of the dataset available at the ESRI portal.
Thus, the harvesting approach in OPAL thus must be open to new sources identified ad-hoc. In
other cases, such as data sets on the Portal data.deutschebahn.com, the crawler has to follow
several links to access all relevant Web pages.
At the same time, open data and its metadata is a small fraction of the content of the Web.
Hence, a generic Web crawler would not be a suitable method for gathering the metadata, as it
would visit too many irrelevant Web pages.

1.2 Goals and non-goals
In this deliverable, we want to specify the functionality, as well as non-functional requirements,
of the crawler component responsible for extracting the metadata from the data sources. Each
requirement will be complemented with evaluation criteria that have to be met for this
requirement to be successfully implemented. This specification includes the interfaces and data
formats used to exchange information with other components in the OPAL platform (see
Deliverable D1.3 on the system architecture), as far as these can be specified at this point in
time. Furthermore, we will document a first prototypical implementation of the crawling
component. For this, we also discuss available software frameworks that could be used as a
foundation.
We will not specify details on how to learn crawling strategies from extracted metadata. This will
be part of Deliverable D2.4. Also, in contrast to the functional and non-functional evaluation
criteria we will not define the details of comprehensive benchmarks on which the crawler will be
evaluated. The benchmark definition will be part of Deliverable D2.3.

2

D2.1 - Spezifikation der Crawler-Komponente

2 Requirements for the crawler component
In the following, we list two types of requirements for the OPAL crawler component. On the one
hand, these are functional requirements like services or functions, which must be provided by
the crawler implementation. On the other hand, non-functional requirements describe quality
issues, underlying conditions, or requirements, which are open to be implemented in various
ways. The lists of requirements will be used in the decision-making process for the crawler
architecture and implementation as well as for the comparison of existing frameworks (see
Section 4).

2.1 Functional requirements

Key Title Description Evaluation Criteria Reference
(D1.1)

CF1 Focused
Crawling of
HTTP pages

The focused crawler uses
predefined seed-lists to
access and run through Web
resources and provide
filtering options for
following links to other Web
resources.

Manual comparison of
meta information at
data portals with
crawled data.

AK11

CF2 Access via
various
protocols

The crawler can access data
using different standard
protocols, e.g. HTTPS and
FTP

Test cases for crawler
connectors;
availability of crawled
data from sites using
these protocols.

AK11

CF3 Periodical
crawling

A function to start
periodical and iterative
crawling processes,
supported by the crawling
framework, is available in
the OPAL administration.

Availability of this
function with
unit/integration test.

AK4

CF4 Fetching Relevant raw data, which
was found by the crawler, is
extracted and stored.

Precision/Recall
evaluation with
manually annotated
gold standard
samples of sources.

AK11

CF5 Analysis Semi-structured, fetched
data is analyzed to access
only relevant parts.

Precision/Recall
evaluation with
manually annotated
samples

AK12

CF6 Extraction Raw data strings are
extracted from surrounding
structural data (e.g. HTML

The extracted data
does not include
structural

AK12

3

D2.1 - Spezifikation der Crawler-Komponente

tags). information.

CF7 Semantic,
machine
readable data
storage

Found data should be stored
in a data format which is
appropriate to handle the
semantics of the extracted
information, to be linked in
a following integration step.
(E.g. Turtle, Terse RDF
Triple Language)

Validation of crawled
data.

AK7, AK9

CF8 Storage of
time-specific
data

The crawler component
enriches extracted data (see
CF7) with a timestamp and
stores it.

Unit test. AK17, AK4

CF9 CKAN API
support

The crawler can use the
CKAN API for CKAN sources
for more efficient data
access.

Integration test case.

Table 1: Functional requirements for the crawling component.
Legend:

- AK: consolidated requirement (konsolidierte Anforderung) in OPAL deliverable D1.1
- CF: functional requirement for crawling

2.2 Non-functional requirements

Key Title Description Evaluation Criteria Reference
(D1.1)

CN1 Configuration A configuration of data
seeds (e.g. catalogue
overviews) is possible via a
user interface for humans
and in a programatic way
(via an API).

Availability of the
configuration UI and
API, test cases.

CN2 Monitoring of
crawling
process

The crawler component
provides an appropriate
overview of ongoing
crawling processes.

Survey among OPAL
members.

CN3 Control of
crawling
process

There is an option to
manually control (start,
stop) the crawling
component for OPAL
administration in an
user-friendly manner.

Survey among OPAL
members.

(AK6)

CN4 Documentation
of component

The developers provide a
documentation for the

Document to provide.

4

D2.1 - Spezifikation der Crawler-Komponente

configuration of the
crawler.
(Note: Already done by
Squirrel mini-tutorial of
Geraldo)

CN5 Documentation
of data flow

A description of the storage
of data is provided.
(Note: Useful for
monitoring)

Document to provide.

CN6 Time efficient
crawling

Multiple instances or
sub-components allow to
crawl single or multiple
resources in parallel.
(Note: Squirrel workers)

Test of sequential and
parallel crawling jobs.

CN7 Polite crawling The crawler should respect
robots.txt and add
reasonable pauses when
between accesses.

Integration test with
server mock tracking
the crawler
behaviour.

Table 2: Non-functional requirements for the crawling framework.
Legend:

- AK: consolidated requirement (konsolidierte Anforderung) in OPAL deliverable D1.1
- CN: non-functional requirement for crawling

3 Interfaces

3.1 Interaction with other components in OPAL
Regarding the overall OPAL architecture, the crawler has to be controlled by components, but
does not have to control sub-components of the OPAL architecture stack itself (see Figure 1).
Therefore, an application interface for incoming requests and outgoing responses has to be
implemented.

5

D2.1 - Spezifikation der Crawler-Komponente

Figure 1: Architecture part of the crawler component

Crawling processes will typically be executed periodically and use known data sources,
identified by the URIs of metadata portals. For these known data sources, a static configuration
is needed. For instance, it has to be specified how individual parts of content can be identified
inside a semi-structured data source like an HTML resource. This crawling information usually
only changes, if the layout of a website changes. For resources out of structured data sources or
API calls, the information about data structures is also defined in a static manner. A direct
interaction with the crawling component is not required.
The accessed and downloaded data should be stored in a data store for raw data. Additionally,
extracted structured data parts are written into an RDF store. The extraction is done by the
analysis framework, which needs to provide a respective endpoint for this operation. The store
will also be used to persist metadata about crawling processes, e.g. the time of the last
successfully finished data access. Using the RDF store for writing persisted data opens the
option for other OPAL components to access crawling information using the storage component
and makes a direct interaction with the crawler component superfluous.
For the use case of URIs, which have to be crawled immediately, a solution for interaction is
required. For those requests, the crawling component has to provide an interface to send a
crawling request. For the implementation of this requirement, the crawler component to be
determined has to provide a REST API or a messaging endpoint (AMQP queue etc.).
Another requirement is to control parallel crawling processes. A synchronization element or an
implementation as a singleton is required by the selected crawler implementation.
When a new resource has been crawled or re-crawled, the new metadata should be processed by
the upper layers in the OPAL architecture. For the first iteration, this is invoked manually, but
later versions should support a non-blocking, loosely coupled way to trigger further processing,
e.g., using Linked Data Notifications or sending messages on updated resources to an AMQP
broker.
Further functionality, such as learning a crawler strategy, classification of crawled documents
and application of natural language processing techniques is not part of this crawler component,
but of the analysis framework, which in turn reconfigures the crawler to improve the focused
crawling performance.

6

D2.1 - Spezifikation der Crawler-Komponente

3.2 Operations
The crawler interface is mainly composed by two parts: one related to statistics about the
crawled uris and the other that shows the current crawled graph.
The main page shows the current status of the crawling process, displaying the pending uris, how
many uris were crawled, how many workers are active and how many workers are dead. Also, it is
possible to query the crawled uris by using Sparql query syntax in this page.
A worker it is considered dead if there is no more tasks available to it. Every worker registered in
the Frontier, will be associated to the ip address of the first uri assigned to it. When there is no
more uris related to that ip to be crawled, the task of that worker will be considered done and the
Frontier will consider the worker dead, waiting for a new worker to get uris from different
domains.
The crawled graph shows all the domains crawled as nodes and its edges connecting themselves.
This level of details was chose due to performance issues (if the graph would render all the uris,
it would require heavy processing, to not say impossible). From this view, it will be possible to
export the graph to different formats and extract other graph related statistics.

3.3 Data formats
In this section we will briefly discuss the data formats to be processed by the crawler component.

With regards to the input formats, the crawler is concerned with two things. First, there’s the
seed file containing the initial URIs to be crawled. This simple list is augmented with an option to
filter the URIs to be followed. We first define this as a WhiteList here, e.g., as a specification of
acceptable URI patterns to be crawled. If necessary, this should later be extended to a grey
listing approach, i.e., making it possible to also specify URI patterns to be excluded, which can
often simplify this specification. Finally, we define the acceptable media types for the documents
to be crawled. The crawler should support the following formats:

- HTML Documents
- RDF serialization types

- Turtle
- RDF/XML
- N-Triples
- JSON-LD
- RDF/JSON
- TriG
- N-Quads
- TriX
- RDF Binary

- JSON (from CKAN API)

With regards to the output formats, the crawling component should support the following
options:

- Triple Store (for SPARQL update requests)
- RDF N-Quad line-based, plain text format to File System

- Compressed or not (depending of the selected implementation)
- Source file (containing the crawled raw data)

- Storing the original fetched documents

7

D2.1 - Spezifikation der Crawler-Komponente

4 Prototypical implementation
According to the description of work, the implementation of the focused crawling component in
the OPAL project should be reusing an existing framework. In this section, we identify existing
relevant open-source crawler frameworks and describe them briefly. Then we compare them
w.r.t. the requirements in Section 2 and explain our decision for one of them before detailing the
initial implementation towards the D2.2 prototype deliverable (first version of the crawler
component).

4.1 Considered existing crawler frameworks
The primary criteria for the selected crawler framework include: (should be part of Section 2):

- crawling Web pages (HTML)
- extensible to different protocols (e.g., FTP required for DWD)
- focused crawling possible (via extensions)
- machine-readable output format (preferably RDF)

With a literature review and using a generic Web search engine we identified the following
classes and instances of open-source crawling frameworks:

- Generic Crawlers (WebMagic, StormCrawler, Apache Nutch, REX, HTTrack)
- LD Web Crawlers (ldspider, slug)
- Web crawler with RDF output (Any23, Squirrel, TDSP)

The following list introduces each framework briefly.

● WebMagic is a scalable open-source HTTP crawler. It supports a simple API for 1

extracting HTML elements. It does not support protocols other than HTTP.
● StormCrawler is an open source SDK for building distributed web crawlers based on 2

Apache Storm. The project is under Apache license v2 and consists of a collection of
reusable resources and components, written mostly in Java.

● Apache Nutch is a highly extensible and scalable open source web crawler software 3

project. Stemming from Apache Lucene, the project has diversified and now comprises
two codebases, namely:

○ Nutch 1.x: A well matured, production ready crawler. 1.x enables fine grained
configuration, relying on Apache Hadoop data structures, which are great for
batch processing.

○ Nutch 2.x: An emerging alternative taking direct inspiration from 1.x, but which
differs in one key area; storage is abstracted away from any specific underlying
data store by using Apache Gora for handling object to persistent mappings. This
means that an extremely flexibile model/stack for storing everything (fetch time,
status, content, parsed text, outlinks, inlinks, etc.) into a number of NoSQL
storage solutions can be implemented.

1 http://webmagic.io/en/
2 http://stormcrawler.net/
3 http://nutch.apache.org/

8

http://webmagic.io/en/
http://stormcrawler.net/
http://nutch.apache.org/

D2.1 - Spezifikation der Crawler-Komponente

● REX is an RDF extraction framework for Web data that can learn XPath wrappers from 4

unlabelled Web pages using knowledge from the Linked Open Data Cloud.
● HTTrack is a free (GPL, libre/free software) and easy-to-use offline browser utility. It 5

allows you to download a World Wide Web site from the Internet to a local directory,
building recursively all directories, getting HTML, images, and other files from the server
to your computer.

● The LDSpider project provides a web crawling framework for the Linked Data web. 6

Requirements and challenges for crawling the Linked Data web are different from regular
web crawling, thus the LDSpider project offers a web crawler adapted to traverse and
harvest content from the Linked Data web.

● Slug is a web crawler (or Scutter) designed for harvesting semantic web content. 7

Implemented in Java using the Jena API, Slug provides a configurable, modular
framework that allows a great degree of flexibility in configuring the retrieval, processing
and storage of harvested content. The framework provides an RDF vocabulary for
describing crawler configurations and collects metadata concerning crawling activity.

● Anything To Triples (any23) is a library, a web service and a command line tool that 8

extracts structured data in RDF format from a given source, provided in several supported
formats. Crawling is supported by a plugin, but isn’t focused.

● Squirrel is an open-source crawling framework which enables extracting elements from 9

different sources into RDF. It is component-based and can easily be extended towards
supporting further fetchers, analyzers, queues, sinks etc.

● Template-Driven Semantic Parser (TDSP) is a crawler/parser approach which is 10

capable to provide the semantics of extracted Web data in the RDF format, based on
templates defined in XML.

4.2 Evaluation of existing crawler frameworks
The crawling frameworks discussed above have been analysed and compared to the functional
requirements (see Section 2). Table 3 shows a summary of the findings.

Tool/Req. CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9

WebMagic X
(Just one link)

✔ (Http only) X ✅ ✅ ✅ ✅ ✅ X

StormCrawle
r

✔ ✔ (Http only) X X X X X X X

Apache
Nutch

✔ ✔ X ✔ ✅ ✅ ✅ X X

REX ✔ ✔ (Http only) X ✔ ✔ ✔ ✔ X X

4 http://aksw.org/Projects/REX.html
5 https://www.httrack.com/
6 https://github.com/ldspider/ldspider
7 http://www.ldodds.com/projects/slug/
8 https://any23.apache.org/index.html
9 https://github.com/dice-group/Squirrel
10 https://link.springer.com/content/pdf/10.1007%2F978-3-319-15615-6_26.pdf

9

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/gpl.txt
http://rdfweb.org/topic/Scutter
http://jena.sourceforge.net/
http://aksw.org/Projects/REX.html
https://www.httrack.com/
https://github.com/ldspider/ldspider
http://www.ldodds.com/projects/slug/
https://any23.apache.org/index.html
https://github.com/dice-group/Squirrel
https://link.springer.com/content/pdf/10.1007%2F978-3-319-15615-6_26.pdf

D2.1 - Spezifikation der Crawler-Komponente

HTTrack ✔ ✔ (Http only) ✅ X X X X X X

ldspider ✔ ✔ (Http only) X ✔ ✔ ✔ ✔ ✔ X

slug ✔ ✔ (Http only) ✅ ✔ ✔ ✔ ✔ ✔ X

Apache
Any23

X
(Just one link)

✔ (Http only) X ✔ ✔ ✔ X X X

Squirrel ✅ ✔ ✔ ✅ ✔ ✔ ✔ ✔ ✔

TDSP X X X ✔ ✔ ✔ ✔ ✔ X

Table 3: Evaluation matrix of crawling frameworks.
✔ : Capable and no development needed,

✅: Capable but needs development
X: Not capable

According to this analysis, we have decided to base our crawler implementation on the Squirrel
framework, as it supports most requirements directly and can be extended towards the others.

4.3 Initial implementation
Squirrel comprises two major parts - a single frontier and n workers. The frontier manages the
crawling process and is based on a queue as well as a database containing the URIs that already
have been crawled in the past. The worker requests work packages from the frontier, performs
the actual crawling (fetching, analysing, storage) and sends new URIs to the frontier.

The frontier is responsible to decide which URI’s should be crawled and send it for the respective
worker. The worker then, receives the URI, fetch the file and uses the analyzer to find new URI’s
in the fetched file, that will be serialized by the collector and stored by the sink. In the end, each
URI found is deserialized, sent to the frontier and the process is repeated.

10

D2.1 - Spezifikation der Crawler-Komponente

For crawling, the frontier will use the SEED_FILE environment variable, where should be the file
that contains seeds to start the crawling process. The frontier can perform focused crawling if
the environment variable URI_WHITELIST_FILE is set. The file should contains a list of domains
which will be allowed to be crawled. If the frontier receives URI’s from other domains, it will be
ignored. If this variable is not set, the frontier will allow everything to be crawled.
The worker setup requires the following environment variables:

● OUTPUT_FOLDER, where the sink will store the crawled URI’s.
● HTML_SCRAPER_YAML_PATH, the path where html scraper config files will be stored.
● CONTEXT_CONFIG_FILE, the spring-context xml file, storing all the implementations

that will be used for the current worker.

The analyzers are responsible for analyzing the fetched file in search for triples. There are two
available analyzers: RDFAnalyzer and HtmlScraperAnalyzer. The RDFAnalyzer is responsible for
matching the proper RDF serialization (if the fetched file is a RDF) to extract all the triples found
and requires no additional configuration. The HtmlScraperAnalyzer, however, needs a yaml
configuration file to define which pages and which elements from a certain domain should be
crawled. Further information on the HtmlScraperAnalyzer can be found in the Squirrel wiki. 11

To run, the worker requires also the CONTEXT_CONFIG_FILE environment variable to run. In this
file, it is defined all the implementations that should be injected by spring-framework into the
worker. The possible implementations are:

● Sink:
○ FileBasedSink: Stores the triples in the file system, using the OUTPUT_FOLDER

env variable.
○ InMemorySink: Stores the triples temporarily in memory.
○ RDFSink: Stores the triples in Sparql Triple Stroe

● Collector:
○ SqlBasedUriCollector: Collects serialized triples in local hsqldb.
○ SimpleUriCollector: Collects serialized triples in memory.

● Serializer:
○ GZipSerializer
○ GSonSerializer
○ SnappyJavaSerializer

The current implementation of the Squirrel crawler, including OPAL extensions, can be found in
the official Squirrel repository:
https://github.com/dice-group/Squirrel/

5 Conclusions
In this deliverable we defined all requirements for the crawler component, identified the
relationship with the analysis framework and decided to use and extend the Squirrel framework
as a foundation for the OPAL crawler component.

11 https://github.com/dice-group/Squirrel/wiki/HtmlScraper_how_to
11

https://github.com/dice-group/Squirrel/wiki/HtmlScraper_how_to
https://github.com/dice-group/Squirrel/wiki/HtmlScraper_how_to

D2.1 - Spezifikation der Crawler-Komponente

12

