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Abstract
The societal and economic consequences surrounding Big Data-driven platforms
 have in‐
creased the call for decentralized solutions.
However, retrieving and querying data in more
decentralized environments
 requires fundamentally different approaches,
 whose properties
are not yet well understood.
Link-Traversal-based Query Processing (LTQP) is a technique
for
querying over decentralized data networks,
in which a client-side query engine discovers data
by traversing links between documents.
Since decentralized environments are potentially un‐
safe due to their non-centrally controlled nature,
there is a need for client-side LTQP query
engines to be resistant against security threats
aimed at the query engine’s host machine or
the query initiator’s personal data.
As such, we have performed an analysis of potential secu‐
rity vulnerabilities of LTQP.
This article provides an overview of security threats in related
domains,
which are used as inspiration for the identification of 10 LTQP security threats.
This
list of security threats forms a basis for future work in which mitigations for each of these
threats need to be developed
and tested for their effectiveness.
With this work, we start filling
the unknowns for enabling query execution over decentralized environments.
Aside from fu‐
ture work on security, wider research will be needed to uncover missing building blocks for
enabling true data decentralization.
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1.  Introduction
Contrary to the Web’s initial design as a decentralized ecosystem,
the Web has grown to be a very

centralized place,
as large parts of the Web are currently made up of a few large Big Data-driven cen‐
tralized platforms [1].
This large-scale centralization has led to a number of problems related to person‐
al information abuse,
and other economic and societal problems.
In order to solve these problems, there
are calls to go back to the original vision of a decentralized Web.
The leading effort to achieve this de‐
centralization is Solid [1].
Solid proposes a radical decentralization of data across personal data vaults,
where everyone is in full control of its own personal data vault.
This vault can contain any number of
documents,
where its owner can determine who or what can access what parts of this data.
In contrast
to the current state of the Web where data primarily resides in a small number of huge data sources,
Solid leads to a a Web where data is spread over a huge number of data sources.

Our focus in this article is not on decentralizing data,
but on finding data after it has been decentral‐
ized,
which can be done via query processing.
The issue of query processing over data has been
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primarily tackled from a Big Data standpoint so far.
However, if decentralization efforts such as Solid
will become a reality,
we need to be prepared for the need to query over a huge number of data sources.
For example, decentralized social networking applications will need to be able to query over networks
of friends containing hundreds or thousands of data documents.
 As such, we need new query tech‐
niques that are specifically designed for such levels of decentralization.
 A promising technique to
achieve this is Link-Traversal-based Query Processing (LTQP) [2, 3].
LTQP is able to query over a set of
documents that are connected to each other via links.
 An LTQP engine typically starts from one or
more documents,
and traverses links between them in a crawling-manner to resolve the given query.

Since LTQP is still a relative young area of research,
there are still a number of open problems that
need to be tackled,
notably result completeness and query termination [2].
Aside from these known is‐
sues,
we also state the importance of security.
Security is a highly important and well-investigated topic
in the context of Web applications [4, 5],
but it has not yet been investigated in the context of LTQP.
As
such, we investigate in this article security issues related to LTQP engines,
which may threaten
the integrity of the user’s data, machine, and user experience,
but also lead to privacy issues if personal
data is unintentionally leaked.
Specifically, we focus on data-driven security issues that are inherent to
LTQP
due to the fact that it requires a query engine to follow links on the Web,
which is an uncon‐
trolled, unpredictable and potentially unsafe environment.
Instead of analyzing a single security threat
in-depth,
we perform a broader high-level analysis of multiple security threats.

Since LTQP is still a relatively new area of research,
its real-world applications are currently limited.
As such, we can not learn from security issues that arose in existing systems.
Instead of waiting for –
potentially unsafe– widespread applications of LTQP,
we draw inspiration from related domains that
are already well-established.
Specifically, we draw inspiration from the domains of crawling and Web
browsers in Section 2,
and draw links to what impact these known security issues will have on LTQP
query engines.
 In Section  3, we introduce a guiding use case that will be used to illustrate different
threats.
After that, we discuss our method of categorizing vulnerabilities in Section 4.
Next, we list 10
data-driven security vulnerabilities related to LTQP in Section 5,
which are derived from known vulner‐
abilities in similar domains,
 and through analysis of the LTQP implementation within the Comunica
query engine [6].
Finally, we discuss the future of LTQP security and conclude in Section 6.

2.  Related Work
This section lists relevant related work in the topics of LTQP and security.

2.1. Link-Traversal-Based Query Processing

More than a decade ago, Link-Traversal-based Query Processing (LTQP) [3, 2]
was been introduced
as an alternative query paradigm for enabling query execution over document-oriented interfaces.
These documents are usually Linked Data [7] serialized using any RDF serialization.
RDF is suitable for
LTQP and decentralization because of its global semantics,
which allows queries to be written indepen‐
dently of the schemas of specific documents.
In order to execute these queries, LTQP processing occurs
over live data,
and discovers links to other documents via the follow-your-nose principle during query
execution.
This is in contrast to the typical query execution over centralized database-oriented inter‐

https://link.springer.com/10.1007/s13222-013-0122-1
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https://www.w3.org/DesignIssues/LinkedData.html
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faces such as SPARQL endpoints,
where data is assumed to be loaded into the endpoint beforehand,
and
no additional data is discovered during query execution.

Concretely, LTQP typically starts off with an input query and a set of seed documents.
The query en‐
gine then dereferences all seed documents via an HTTP GET request,
discovers links to other documents
inside those documents,
and recursively dereferences those discovered documents.
Since document dis‐
covery can be a very long (or infinite) process,
query execution happens during the discovery process
based on all the RDF triples that are extracted from the discovered documents.
This is typically done by
implementing these processes in an iterative pipeline [8].
Furthermore, since this approach can lead to
a large number of discovered documents,
different reachability criteria [9] have been introduced
to re‐
strict what links to follow for a given query.

So far, LTQP research in the area of security has been limited.
One work has indicated the impor‐
tance of trustworthiness [10]
during link traversal, as people may publish false or contradicting infor‐
mation,
which would need to be avoided or filtered out during query execution.
Another work men‐
tioned the need for LTQP engines to adhere to robots.txt files [11]
in order to not lead to unintention‐
al denial of service attacks of data publishers.
Given the focus of our work on data-driven security vul‐
nerabilities in LTQP engines,
we only consider this issue of trustworthiness further in this work,
and
omit the security vulnerabilities from a data publisher’s perspective.

2.2. Vulnerabilities Of RDF Query Processing
Research involving the security vulnerabilities of RDF query processing
has been primarily focused

on injection attacks within Web applications that internally send SPARQL queries to a SPARQL end‐
point [4, 5, 12, 13].
So far, no research has been done on vulnerabilities specific to RDF federated query‐
ing or link traversal.

2.3. Linked Data Access Control

Kirrane et al. [14] surveyed the existing approaches for achieving access control in RDF,
for both au‐
thentication and authorization.
The authors mention that only a minority of those works apply specifi‐
cally to the document-oriented nature of Linked Data.
They do however mention that non-Linked-Data-
specific approaches could potentially be applied to Linked Data in future work.
 To the best of our
knowledge, no security vulnerabilities have yet been identified for any of these.

2.4. Web Crawlers

Web crawling [15] is a process that involves collecting information on the Web by following links
between pages.
Web crawlers are typically used for Web indexing to aid search engines.
Focused crawl‐
ing [16] is a special form of Web crawling that prioritizes certain Web pages,
such as Web pages about
a certain topic, or domains for a certain country.
LTQP can therefore be considered as an area of fo‐
cused crawling where the priority lies in achieving query results.

One related work in this area involves abusing crawlers to initiate attacks on other Web sites [17].
This may cause performance degradation on the attacked Web site,
or could even cause the crawling
agent to be blocked by the server.
These attacks involve convincing the crawler to follow a link to a
third-party Web site
 that exploits a certain vulnerability, such as an SQL injection.
Additionally, this
work describes a type of attack that allows vulnerable Web sites to be used
for improving the PageR‐
ank [18] of an attacker-owned Web site via forged backlinks.

https://link.springer.com/10.1007/978-3-642-30284-8_8
https://arxiv.org/abs/2005.02239
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Some other works focus on mitigation of so-called crawler traps [19, 20] or spider traps.
These are
sets of URLs that cause an infinite crawling process,
which can either be intentional or accidental.
Such
crawler traps can have multiple causes:

Links between dynamic pages that are based on URLs with query parameters;

Infinite redirection loops via using the HTTP 3xx range;

Links to search APIs;

Infinitely paged resources, such as calendars;

Incorrect relative URLs that continuously increase the URL length.

Crawler traps are mostly discovered through human intervention when many documents in a single
domain are discovered.
Recently, a new detection technique was introduced [21]
that attempts to mea‐
sure the distance between documents,
and rejects links to documents that are too similar.

2.5. Web Browsers
Web browsers enable users to visualize and interact with Web pages.
This interaction is closely relat‐

ed to LTQP,
with the main difference that LTQP works autonomously,
while Web browsers are user-
driven.
Silic et al. [22]
analyzed the architectures of modern Web browsers,
determined the main vul‐
nerabilities,
 and discuss how these issues are handled.
 They list the following main threats for Web
browsers:
1. System compromise: Malicious arbitrary code execution with full privileges on behalf of the user.

For example, exploits in the browser or third-party plugins caused by bugs. These types of attacks are
mitigated through automatic updates once exploits become known.

2. Data theft: Ability to steal local network or system data. For example, a Web page includes a subre‐
source to URLs using the file scheme (file://), which are usually blocked.

3. Cross domain compromise: Code from a Fully Qualified Domain Name (FQDN) executes code (or
reads data) from another FQDN. For example, a malicious domain could extract authentication cook‐
ies from your bank’s website you are logged into. This is usually blocked through the same-origin
policy, but can be explicitly allowed through Cross-Origin Resource Sharing (CORS)
(https://fetch.spec.whatwg.org/#http-cors-protocol).

4. Session hijacking: Session tokens are compromised through theft or session token prediction. For
example, cross-domain request forgery (CSRF) [23] is a type of attack that involves an attacker forc‐
ing a user logged in on another Web site to perform an action without their consent. Web browsers
do not protect against these attacks, but they are typically handled by Web frameworks via the Syn‐
chronizer Token Pattern [24].

5. User interface compromise: Manipulating the user interface to trick the user into performing an
action without their knowledge. For example, placing an invisible button in front of another button.
This category also includes CPU and memory hogging to block the user from taking any further ac‐
tions. Web browsers have limited protections for these types of attacks that involve placing limita‐
tions on user interface manipulations.

3.  Use Case

https://www.contentkingapp.com/academy/crawler-traps/
https://fetch.spec.whatwg.org/#http-cors-protocol
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In this section, we introduce a use case
that will be used to illustrate the security threats discussed
throughout this article.

We assume a Web with public and private information,
which may for instance be achieved via per‐
sonal data vaults
following the principles of the Solid ecosystem [1].
This data vault is in full control of
the owner,
and they can host any kind of file in here, such as Linked Data files.

For this use case, we assume the existence of three people (Alice, Bob, and Carol),
each having their
own personal data vault.
Alice uses her vault to store an address book containing the people she knows.
Instead of storing contact details directly in the address book,
she stores links to the profiles of her con‐
tacts (Bob and Carol).
Bob and Carol can then self-define their own contact details.
Fig. 1 shows an il‐
lustration of this setup.

The LTQP paradigm is well-suited to handle query execution over such setups.
If Alice for instance
would like to obtain the names of all her contacts,
she could initiate a query starting from her address
book as seed document,
and the query engine would follow the links to her contacts,
and obtain the
names from their respective profiles.
Some documents may require authentication before they can be
accessed,
for which Alice’s query engine makes use of Alice’s identity.
In all threats throughout this ar‐
ticle,
we assume that Carol has malicious intentions that Alice is unaware of.

In this use case, two main roles can be identified.
The first is the role of data publisher,
which is taken
up by Alice, Bob, and Carol though their personal data vaults.
The second is the role of the query initia‐
tor,
which here applies to Alice, as she issues a query over her contacts.

4.  Classification Of Security Vulnerabilities
In this section, we first introduce the background on classifying security vulnerabilities in software.

After that, we introduce a classification method specifically for the LTQP domain,
to assess the validity
of our work.

4.1. Background

Security vulnerabilities in software can be classified using many different methods [25, 26].
Generic
classification methods often result in very large taxonomies,
 which are shown to result in practical
problems [25] due to their size and complexity.

Fig. 1: Overview of the address book use case
in which Alice has an address book with links
to the profiles of Carol and Bob,
which contain further details.

https://ruben.verborgh.org/articles/redecentralizing-the-web/
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Seacord et al.  [25]
 claim that classification methods must be based on engineering analysis of the
problem domain,
instead of being too generic.
For this, they suggest the use of domain-specific attribut‐
es for classifying security vulnerabilities for each domain separately.
Furthermore, they introduce the
following terminology for security vulnerabilities,
by building upon earlier formal definitions of vulner‐
abilities [26]:

A defect in a software application or component that, when combined with the neces‐
sary conditions, can lead to a software vulnerability.

A set of conditions that allows violation of an explicit or implicit security policy.

A technique that takes advantage of a security vulnerability to violate an explicit or implicit
security policy.

Techniques to prevent or limit exploits against vulnerabilities.

For the remainder of this article, we will make use of this terminology,
and we adopt a method here‐
after for classifying software vulnerabilities specific to the LTQP domain
as recommended by Seacord et
al. [25].

4.2. Classification Method

Our classification method considers the listing of several security vulnerabilities.
Each vulnerability
has one or more possible exploits, which may take advantage of this vulnerability.
The different proper‐
ties of each exploit are shown in Table 1.

5.  Data-Driven Vulnerabilities
As shown before in Subsection 2.2,
most research on identifying security vulnerabilities within RDF

query processing
 focuses on the query itself as a means of attacking, mostly through injection tech‐
niques.
Since LTQP engines also accept queries as input,
 these existing techniques will therefore also
apply to LTQP engines.

In this work, we acknowledge the importance of these vulnerabilities,
but we instead place our atten‐
tion onto a new class of vulnerabilities
that are specific to LTQP engines as a consequence of the open
and uncontrolled nature of data on the Web.
Concretely, we consider two main classes of security vul‐
nerabilities to LTQP engines:
1. Query-driven: vulnerabilities that are caused by modifying queries that are the input to certain

query engines.

2. Data-driven: vulnerabilities that are caused by the presence, structuring, or method of publishing
data on the Web.

Attribute Values
Attacker Data publisher, …
Victim LTQP engine, query initiator, data publisher, …
Impact Incorrect query results, system crash, …
Difficulty Easy, medium, hard

Table 1: Exploit properties specific to LTQP, with several possible values for each attribute.
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To the best of our knowledge, all existing work on security vulnerabilities within RDF querying
has
focused on query-driven vulnerabilities.
Given its importance for LTQP engines,
we focus on data-dri‐
ven vulnerabilities for the remainder of this work.

Hereafter, we explain and classify each vulnerability using the classification method from Section  4.
For each vulnerability, we provide at least one possible example of an exploit based on our use case.

Unless mentioned otherwise, we do not make any assumptions about specific forms or semantics of
LTQP,
which can influence which links are considered.
The only general assumption we make is that we
have an LTQP query engine that follows links in any way,
and executes queries over the union of the
discovered documents.

5.1. Unauthoritative Statements

A consequence of the open-world assumption [27] where anyone can say anything about anything,
is that both valid and invalid (and possibly malicious) things can be said.
When a query engine is tra‐
versing the Web,
it is therefore possible that it can encounter information that impacts the query results
in an undesired manner.
This information could be untrusted [10, 28], contradicting, or incorrect.
With‐
out mitigations to this vulnerability, query results from an LTQP can therefore never be really trusted,
which brings the practical broad use of LTQP into question.

Exploit: producing untrusted query results by adding unauthoritative triples
Given our use case, Carol could for instance decide to add one additional triple to her profile,
such as:

<https://bob.pods.org/profile#me> :name "Dave".
She would therefore indicate that Bob’s name is
“Dave”.
 This is obviously false, but she is “allowed” to state this under the open world assumption.
However, this means that if Alice would naively query for all her friend’s names via LTQP,
she would
have two names for Bob appear in her results,
namely “Bob” and “Dave”, where this second result may
be undesired.

Data publisher (Carol)

Query results from the LTQP engine of Alice

Untrusted query results

Easy (adding triples to an RDF document)

5.2. Intermediate Result And Query Leakage

This vulnerability assumes the existence of a hybrid LTQP query engine that primarily traverses
links,
 but can exploit database-oriented interfaces such as SPARQL endpoints if they are detected in
favour of a range of documents.
Furthermore, we assume a range of documents that require authentica‐
tion,
as their contents are not accessible to everyone.
Query engines typically decompose queries into
smaller sub-queries,
 and join these intermediate results together afterwards.
 In the case of a hybrid
LTQP engine,
intermediate results that are obtained from the traversal process from non-public docu‐
ments
could be joined with data from a discovered SPARQL endpoint.
An attacker could therefore set
up an interface that acts as a SPARQL endpoint,
but is in fact a malicious interface that intercepts
intermediate results from LTQP engines.

Exploit: capturing intermediary results via malicious SPARQL endpoint
Based on our use case, Carol could include a triple with a link to the SPARQL endpoint at http:/​/​

attacker.com/sparql.
If Alice makes use of a hybrid LTQP engine with an adaptive query planner, this

https://arxiv.org/abs/2005.02239
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internal query planner could decide to make use of this malicious endpoint
once it has been discovered.
Depending on the query planner, this could mean that non-public intermediate results from the tra‐
versal process such as Bob’s telephone are used as input to the malicious SPARQL endpoint.
 Other
query planning algorithms could even decide to send the full original SPARQL query to the malicious
endpoint.
Depending on the engine and its query plan,
this could give the attacker knowledge of inter‐
mediate results,
or even the full query.
This vulnerability enables attackers to obtain insights into user
behaviour, which is a privacy concern.
A more critical problem is when private data is being leaked that
normally exists behind access control, such as bank account numbers.

SPARQL endpoint publisher (Carol)

Intermediary results of the LTQP engine of Alice

Leakage of (intermediary) query results

Medium (setting up a malicious SPARQL endpoint)

5.3. Session Hijacking
In this vulnerability, we assume the presence of some form of authentication
 (such as WebID-

OIDC [29]) that leads to an active authenticated session.
 This vulnerability is similar to that of Web
browsers,
where the session token can be compromised through theft or session token prediction.
Such
a vulnerability could lead to cross-domain request forgery (CSRF) [23] attacks,
where an attacker forces
the user to perform an action while authenticated without the user’s consent.

Exploit: triggering unintended operations on SPARQL endpoint behind access control
For example, we assume that Alice has a flawed SPARQL endpoint running at http:/​/​my-

endpoint.com/sparql,
 which requires Alice’s session for accepting read and write queries.
 Alice’s
query engine may have Alice’s session stored by default for when she wants to query against her own
endpoint.
 If Carol knows this, she could add a malicious triple with a link to http:/​/​my-

endpoint.com/sparql?query=DELETE * WHERE { ?s ?p ?o } in her profile.
While the SPARQL proto‐
col only allows update queries via HTTP POST,
Alice’s flawed query engine could implement this incor‐
rectly so that update queries are also accepted via HTTP GET.
 If Alice executes a query over her ad‐
dress book, the query engine could dereference this link
with her session enabled, which would cause
her endpoint to be cleared.
This vulnerability is however not specific to SPARQL endpoints,
but may oc‐
cur on any type of Web API that allows modifying data via HTTP GET requests.

Data publisher (Carol)

Alice’s stored data

Removal or modification of Alice’s stored data

Easy (adding a malicious link to flawed endpoint)

5.4. Cross-Site Data Injection

This vulnerability concerns ways by which attackers can inject data or links into documents.
For in‐
stance, HTTP GET parameters are often used to parameterize the contents of documents.
If such para‐
meters are not properly validated or escaped,
they can be used by attackers to include malicious data or
links.

https://github.com/solid/webid-oidc-spec
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Exploit: injecting untrusted links via flawed trusted API
For example, assuming Alice executes a query over a page from Carol,
 and a compromised API

http:/​/​trusted.org/?name that dynamically creates RDF responses based on the ?name HTTP GET pa‐
rameters.
In this case, the API simply has a Turtle document template into which the name is filled in as
a literal value,
but it does not do any escaping.
We assume Alice decides to fully trust all links from
http:/​/​trusted.org/ to other pages,
but only trusts information directly on Carol’s page or links to
other trusted domains.
If Carol includes a link to <http://trusted.org/?name=Bob". <> rdfs:seeAlso
<http://hacker.com/invalid-data>. <> foaf:name "abc"",
then this would cause the API to produce
a Turtle document that contains a link to http:/​/​hacker.com/invalid-data,
which would lead to un‐
wanted data to be included in the query results.

Data publisher (Carol)

Query results from the LTQP engine of Alice

Untrusted query results

Easy (adding triples to an RDF document)

5.5. Arbitrary Code Execution

Advanced crawlers such as the Googlebot [30] allow JavaScript logic to be executed for a limit dura‐
tion,
since certain HTML pages are built dynamically via JavaScript at the client-side.
In this vulnerabil‐
ity, we assume a similar situation for LTQP,
where Linked Data pages may also be created client-side
via an expressive programming language such as JavaScript.
This would in fact already be applicable to
HTML pages that dynamically produce JSON-LD script tags or RDFa in HTML via JavaScript.
In order
to query over such dynamic Linked Data pages,
 a query engine must initiate a process similar to
Googlebot’s JavaScript execution phase.
Such a process does however open the door to potentially ma‐
jor security vulnerabilities
 if malicious code is being read and executed by the query engine during
traversal.

Exploit: manipulate local files via overprivileged JavaScript execution
For example, we assume that Alice’s LTQP query engine executes JavaScript on HTML pages before

extracting its RDFa and JSON-LD.
Furthermore, this LTQP engine has a security flaw that allows exe‐
cuted JavaScript code to access and manipulate the local file system.
Carol could include a malicious
piece of JavaScript code in her profile that makes use of this flaw to upload all files on the local file sys‐
tem
to the attacker, and deletes all files afterwards so that she can hold Alice’s data for ransom.

Data publisher (Carol)

Files on machine in which Alice’s query engine runs

Removal or modification of files on Alice’s machine

Easy (adding JavaScript code to a document)

5.6. Link Traversal Trap

LTQP by nature depends on the ability of iteratively following links between documents.
It is howev‐
er possible that such link structures cause infinite traversal paths and make the traversal engine
get trapped,
either intentional or unintentional, just like crawler traps.
Given this reality, LTQP query

https://developers.google.com/search/docs/guides/javascript-seo-basics
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engines must be able to detect such traps.
Otherwise, query engines could never terminate,
and possibly
even produce infinite results.

Exploit: forming a link cycle
A link cycle is a simple form of link traversal trap that could be formed in different ways.
First, at the

application-level, Carol’s profile could contain a link path to document X,
and document X could con‐
tain a link path back to Carol’s profile.
Second, at the HTTP protocol-level, Carol’s server could return
for her profile’s URL an (HTTP 3xx) redirect chain to URL X,
and URL X could contain a redirect chain
back to the URL of her profile.
Third, at the application level, a cycle structure could be simulated via
virtual pages that always link back to similar pages, but with a different URL.
For example, the Linked
Open Numbers [31] project generates a long virtual sequence of natural numbers,
which could produce
a bottleneck when traversed by an LTQP query engine.

Data publisher (Carol)

Query process of Alice’s query engine

Unresponsiveness of Alice’s query engine

Easy

5.7. System Hogging

The user interface compromise vulnerability for Web browsers includes attacks involving CPU and
memory hogging
through (direct or indirect) malicious code execution or by exploiting software flaws.
Such vulnerabilities also exist for LTQP query engines,
especially regarding the use of different RDF se‐
rializations,
and their particularities with respect to parsing.

Exploit: producing infinite RDF documents
For example, RDF serializations such as Turtle [32] are implicitly designed as to allow streaming seri‐

alization and deserialization.
 JSON-LD even explicitly allows this through its Streaming JSON-LD
note [33].
Due to this streaming property, RDF documents of infinite size can be generated,
since serial‐
izations place no limits on their document sizes.
Valid use cases exist for publishers to generate infinite
RDF documents,
which can be streamed to query engines.
Query engines with non-streaming or flawed
streaming parsers, can lead to CPU and memory issues.
Furthermore, similar issues can occur due to
very long or infinite IRIs or literals inside documents.
Other attacks could exist that specifically target
known flaws in RDF parsers that cause CPU or memory issues.

Data publisher (Carol)

Machine in which Alice’s query engine runs

Unresponsiveness or crashing of Alice’s query engine or machine

Easy

5.8. Document Corruption

Since the Web is not a centrally controlled system,
it is possible that documents are incorrectly for‐
matted,
either intentional or unintentional.
RDF formats typically prescribe a restrictive syntax,
which
require parsers to emit an error when it encounters illegal syntax.
When an LTQP engine discovers and
parses a large number of RDF documents,
 possibly in an uncontrolled manner,
 it is undesired that a

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld11-streaming/
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syntax error in just a single RDF document can cause
the whole query process to terminate with an er‐
ror.
Furthermore, the phenomenon of Link Rot  [34] can lead to links going dead (HTTP 404) at any
point in time,
while finding a link to a URL that produces a 404 response should not always cause the
query engine to terminate.

Exploit: publishing an invalid RDF document
For example, Carol could decide to introduce a syntax error in her profile document,
or she could

simply remove it to produce a 404 response.
This would could cause Alice’s queries over her friends
from that point on to fail.

Data publisher (Carol)

Alice’s query engine

Crashing of Alice’s query engine

Easy

5.9. Cross-Query Execution Interaction
Query engines of all forms typically make use of caching techniques to improve performance of

query execution.
LTQP query engines can leverage caching techniques for document retrieval.
Within a
single query execution, or across multiple query executions,
the documents may be reused, which could
reduce the overall number of HTTP requests.
Such forms of caching can lead to vulnerabilities based on
information leaking across different query executions.
We therefore make the assumption of caching-
enabled LTQP engines in this vulnerability.

Exploit: timing attack to determine prior knowledge
A first exploit of this vulnerability is an attack that enables Carol to gain knowledge about
whether

or not Bob’s profile has been requested before by Alice.
We assume that Alice’s engine issues a query
over a document from Carol listing all her pictures.
We also assume that Bob’s profile contains a link to
Carol’s profile.
 If Carol includes a link from her pictures document to Bob’s profile, and Bob’s profile
already links to Carol’s profile,
 then the query engine could fetch these three documents in sequence
(Carol’s pictures, Bob’s profile, Carol’s profile).
Since Carol’s pictures and profile are in control of Carol,
she could perform a timing attack  [35] to derive how long the Alice’s query engine took to process
Bob’s profile.
Since HTTP delays typically form the bottleneck in LTQP,
Carol could thereby derive if
Bob’s profile was fetched from a cache or not.
This would enable Carol to gain knowledge about prior
document lookups,
which could for example lead to privacy issues with respect to the user’s interests.

Data publisher (Carol)

Privacy about Alice’s document usage

Alice’s document usage becomes known to Carol

Hard

Exploit: unauthenticated cache reuse
A second exploit assumes the presence of a software flaw inside Alice’s LTQP query engine
 that

makes document caches ignore authorization information.
 This example is also a form of the
Intermediate Result and Query Leakage vulnerability that was explained before,
for which we assume
the existence of a hybrid LTQP query engine.
 If Alice queries a private file containing her passwords
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from a server using its authentication key,
this can cause this passwords file to be cached.
If Carol has a
query endpoint that is being queried by Alice,
and Carol is aware of the location of Alice’s passwords,
then she could maliciously introduce a link to Alice’s passwords file.
Even if the query was not executed
with Alice’s authentication key,
the bug in Alice’s query engine would cause the passwords file to be
fetched in full from the cache,
which could cause parts of it to be leaked to Carol’s query endpoint.

Data publisher (Carol)

Alice’s private data

Alice’s private data is leaked

Easy (if cache is flawed)

5.10. Document Priority Modification

Different techniques are possible to determine the priority of documents [36] during query process‐
ing.
If queries do not specify a custom ordering, this prioritization will impact the ordering of query re‐
sults.
Some of these techniques are purely graph-based, such as PageRank [18], and can therefore suffer
from purely data-driven attacks.
This vulnerability involves attacks that can influence the priority of
documents,
and thereby maliciously influence what query results come in earlier or later.

Exploit: malicious PageRank prioritization of documents
One possible exploit is similar to the attack to modify priorities within crawlers [17].
We assume that

Alice issues a query that returns grocery stores in the local area,
which is executed via a LTQP query
engine that makes use of PageRank to prioritize documents.
Furthermore, we assume a highly-scoring,
but vulnerable API that accepts HTTP GET parameters
that can be abused to inject custom URLs inside
the API responses.
If Carol aims to increase the ranking of her grocery store within Alice’s query for
better visibility,
then she could exploit this vulnerable API.
Concretely, Carol could place links from the
grocery store’s page to this vulnerable API
using GET parameters that would cause it to link back to
Carol’s grocery store.
Such an attack would lead to a higher PageRank for Carol’s grocery store,
and
therefore an earlier handling and result representation
of Carol’s grocery store.

Data publisher (Carol)

Order of Alice’s query results

Carol’s page is ranked higher

Medium

6.  Conclusions
With this prospective analysis, we have illustrated the importance of more security-oriented research

in the domain on LTQP and the general handling of decentralized environments such as Solid [1],
espe‐
cially in the presence of data behind authentication.
In future work, work is needed to determine miti‐
gation strategies for them,
which may be inspired by existing techniques in related domains.
Further‐
more, research will be needed to test the impact of these mitigations on implementations,
analyze their
performance impact,
 introduce more performant techniques and algorithms,
and introduce and apply
attack models to test their effectiveness.
Since our analysis of security vulnerabilities is by no means ex‐
haustive,
additional research efforts are needed to uncover and predict potential security vulnerabilities

https://link.springer.com/10.1007/978-3-319-46523-4_19
https://ruben.verborgh.org/articles/redecentralizing-the-web/
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in LTQP.
 Such future research—with our work as a first step—is crucial for enabling a decentralized
Web which we can query securely.
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