
Julien AIMONIER-DAVAT, Hala-Skaf Molli, Pascal Molli

julien.aimonier-davat@ls2n.fr

QuWeDa 2020 @ISWC 2020

Knowledge based Rewriting
Evaluation of the transitive closure
in the context of Web preemptionEvaluating Property Path Queries on

online Knowledge Graphs

1

Issues

2

I want to retrieve for each creative work the list
of fiction works that inspired it !

Creative works and the list of fiction works
that inspired it

3

Property Path
Match path of arbitrary length !

On Wikidata: No Results

4

The query
does not
terminate !!

On DBpedia: Resources

5

The query
does not
terminate !!

Property path queries are widely used

● Property path queries are about 34% of
Wikidata's queries[1]

● 62% of them use transitive closure
expressions
○ ?x (b|c)* ?y

[1] Angela Bonifati, Wim Martens, and Thomas Timm. “Navigating the Maze of Wikidata Query Logs” 2019.
The World Wide Web Conference.

6

How to execute queries with
property paths online and get

complete results ?

7

State of art

8

Evaluation of property path queries
with TPF and Comunica

● TPF only supports paginated
triple pattern queries
○ But any query terminates

● Comunica[2] decomposed
property paths into triple pattern
queries
○ We get complete results

● Poor performance

9
[2] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh. “Comunica: a Modular
SPARQL Query Engine for the Web” 2018. 17th International Semantic Web Conference.

Evaluation of property path queries
with SaGe and SaGe-Jena

● SaGe server[3] can process
Basic Graph Patterns, Unions,
Filters, etc.
○ But not property paths

● SaGe-Jena reuses Jena
property paths implementation

● Same problems as Comunica
○ Poor performance

10
[3] Thomas Minier, Hala Skaf-Molli and Pascal Molli. "SaGe: Web Preemption for Public SPARQL Query services"
2019. The World Wide Web Conference (WWW'19).

Evaluation of property path queries
on smart clients

Without transitivity support on the server, smart clients decompose
property paths into a set of triple pattern queries:

● High data transfer
○ All intermediate results are transferred from the server to the client
○ Worst case O(|V|+|E|)

● High number of HTTP calls:
○ Pay network latency at calls
○ Worst cast O(|V|)

11

12

Property Paths Queries
SPARQL Endpoints TPF, Web

preemption
● Fast when under

the quota
● But, no guarantee

of termination

● Terminates...
● But, prohibitive

data transfer, slow

How to compute efficiently SPARQL
queries with property path online

and get complete results ?

Objectives

Compute property paths
without transitivity
support on the server
while minimizing data
transfer and HTTP calls.

13

Automaton Compression Approach

14

Automaton-based approach Automaton Compression

(b/c)+

- 1 transition 🠮 1 triple pattern query
- Decomposition into a set of triple

pattern queries
- Many client-side joins, many HTTP

calls, many intermediate results

(b/c)+

- 1 transition 🠮 1 BGP query
- Compute as many joins as possible

on the server
- Less client-side joins, less calls, less

intermediate results

Key idea : Automaton compression

15

Scientific Problem

Given a SPARQL query with a property
paths Q and its corresponding
mono-predicate automaton A,
transform A into a multi-predicate
automaton A’ such that L(A) = L(A’)

16

(b/c)

Compression with the join operator

17

● An intermediate state is:
○ Not the initial state
○ A non-final state
○ A state without backward

transitions
● A backward transition:

○ incoming state <= outgoing
state

Compression with the join operator

18

(a?/c)(a/b*/c)

● State 1 has a backward transition
● State 1 cannot be removed without

transitivity support on the server

● State 1 is a final state
● State 1 cannot be removed

From mono-predicate to
multi-predicate

19

● Replace each sequence of transitions by a
single transition when:
○ Extremities are non-intermediate states
○ The other states are intermediate states

● Shortest paths between non-intermediate
states

Example with the Property Path
((a/c) | (d/c))+

20

Shortest paths

Compression without UNION Compression with UNION

(ac|dc)+

- 1 transition 🠮 1 BGP query
- 2 calls at each iteration
- More calls, poorer execution time

(network latency cost)

(ac|dc)+

- 1 call 🠮 1 union of BGPs query
- 1 call at each iteration
- Less calls, better execution time
- +50% of human queries on Wikidata

Key idea : Automaton compression

21

Experimental study

22

● Does automaton compression outperform
Comunica and SaGe-Jena ?

● Does using a multi-predicate automaton
improve property path queries evaluation
compared to a mono-predicate automaton ?

23

Experimental study

➢ BeSEPPI's benchmark[4] updated with the clique test
introduced in[5]

○ 242 queries (73 ASK and 169 SELECT)
○ Dataset with 59 triples, stored using HDT
○ Used to test the conformance of all approaches

with the W3C’s semantics

24

Datasets and Queries

[4] A. Skubella, D. Janke and S. Staab. “BeSEPPI: Semantic-Based Benchmarking of Property Path
Implementations” 2019. The European Semantic Web Conference.
[5] Arenas and al. “Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of
the standard” 2012. Proceedings of the 21st international conference on World Wide Web.

● GMark framework[6]

○ Generated graph
■ Same settings as “Shop” use-case
■ 106 triples, stored using HDT

○ Generate 30 BGP queries
■ 10 without transitive closures
■ 20 with transitive closures

○ Used to test the automaton compression on queries
with complex property path expressions

25

Datasets and Queries

[6] Bagan and al. “gMark: Schema-driven generation of graphs and queries” 2016. IEEE Transactions on
Knowledge and Data Engineering.

● Baseline: Comunica TPF smart client
○ TPF server, page-size 2000 mappings

● Baseline: SaGe-Jena (standard automaton)
○ SaGe client based on Apache Jena
○ Quantum of 75ms
○ Page-size of 2000 mappings

● Automaton without compression: SaGe-A
○ Extension of the SaGe client framework

● Automaton Compression: SaGe-AC
○ Extension of the SaGe client framework 26

Compared approaches

27

Conformance to property path semantics

● Automaton Compression
and SaGe-Jena follow the
semantics

● Comunica cannot
evaluate some transitive
closure expressions...

SaGe-Jena SaGe-ACComunica

28

Execution time, number of HTTP calls and data transfer for
property path queries without transitive closures

// = TimeOut
(30 minutes)

29

Execution time, number of HTTP calls and data transfer for
property path queries with transitive closure

// = TimeOut
(30 minutes)

Comunica does not
handle these queries

30

Execution time, number of HTTP calls and data transfer for
property path queries for SaGe-A and SaGe-AC

// = TimeOut
(30 minutes)

Conclusions
● We proposed a new algorithm to

build an automaton that takes
advantage of the server-side
operators (joins, unions, filters) to
compute property paths

● Our proposal outperforms existing
client-side solutions

31

Perspectives
● Proving the optimality of the

compression
● Looking for a preemptive

decomposition of property path
queries
○ May be an operator to compute

“partial” property path on the
server.

32

Thank you

33

